Muon g - 2/EDM experiment at J-PARC 日本 μ 子反常磁矩 (g - 2) 与电偶极矩测量实验

张策 Ce ZHANG

北京大学物理学院博士在读 School of Physics, Peking University

2021/05/13

Muon g - 2/EDM experiment at J-PARC 日本 μ 子反常磁矩 (g - 2) 与电偶极矩测量实验

Introduction

- Muon anomalous magnetic moment
- Recent result from Fermilab

• Muon g - 2/EDM experiment at J-PARC

- Overview
- R&D highlights
- Roadmap

Summary

Muon anomalous magnetic moment

• The Hamiltonian for the spin 1/2 particle (charge *e* and mass *m*) in the external electromagnetic field is

$$H = -\overrightarrow{\mu} \cdot \overrightarrow{B} - \overrightarrow{d} \cdot \overrightarrow{E}$$

Magnetic dipole moment

$$\overrightarrow{\mu} = g \frac{e\hbar}{2m} \overrightarrow{S}$$

Electric dipole moment

$$\vec{d} = \eta \frac{e\hbar}{2m} \vec{S}$$

- $\overrightarrow{\mu}$ is proportional to gyromagnetic ratio (g), which is predicted to be g = 2 by Dirac equation.
- But quantum fluctuations gives the anomaly of muon a_{μ} :

$$a_{\mu} \equiv \frac{g_{\mu} - 2}{2}$$

Muon anomaly

• In the standard model, muon anomaly a_{μ} is calculated from each contributions:

Muon anomaly

• In the standard model, muon anomaly a_{μ} is calculated from each contributions:

$$a_{\mu}^{\rm SM} = a_{\mu}^{\rm QED} + a_{\mu}^{\rm EW} + a_{\mu}^{\rm Had}$$

• Recent result from Fermilab shows 4.2 σ tension between a_u^{EXP} and a_u^{SM}

Phys Rev Lett.126.141801

Muon anomaly

• New physics contribution to a_{μ} ?

Experimental determination of a_{μ}

1. Prepare a polarized muon beam.

2. Store in a magnetic field (muon's spin precesses)

$$\omega_a = \omega_{\rm S} - \omega_{\rm C} = -\underbrace{\frac{1}{2}(g-2)}_{a_{\mu}} \frac{eB}{m}$$

Measure two quantities: ω_a , **B**

Experimental determination of a_{μ}

1. Prepare a polarized muon beam.

2. Store in a magnetic field (muon's spin precesses)

$$\omega_a = \omega_{\rm S} - \omega_{\rm C} = -\underbrace{\frac{1}{2}(g-2)}_{a_{\mu}} \frac{eB}{m}$$

3. Detect a decay positron

(Higher energy positron tends to emit along muon's spin direction).

Frequency ω_a extraction in Fermilab

- $_{\bullet}$ In the theory $a_{\mu}^{\rm SM}$, hadronic contribution is the most changeling part
- At low energy pQCD is not useful, either LQCD or exp. data is needed.

- $_{\bullet}$ In the theory $a_{\mu}^{\rm SM}$, hadronic contribution is the most changeling part
- At low energy pQCD is not useful, either LQCD or exp. data is needed.

The muon g-2 theory initiative Cross section 10^{3} A group of 170 experts came to a consensus on a single value 10² of muon g-2 in the standard model. The white paper Phys. Rep. 887 (2020) 1-166 (Submitted 15 June Accepted 29 July Published 14 Aug) Physics Reports 2017 workshop in Fermilab 2018 workshop in Mainz 2019 workshop in Seattle 2020→2021 workshop in KEK (online) Supported by the KEK-IPNS theory center e wordt fallet Harrise Umwinds, Mapor An andre 1912 Mil Del et Klauder

https://www-conf.kek.jp/muong-2theory/index.html

Various Theoretical Calculations

Muon g - 2/EDM experiment at J-PARC 日本 μ 子反常磁矩 (g - 2) 与电偶极矩测量实验

Introduction

- Muon anomalous magnetic moment
- Recent result from Fermilab

• Muon g - 2/EDM experiment at J-PARC

- Overview
- R&D highlights
- Roadmap
- Summary

Japan proton accelerator research complex (J-PARC)

- Our experiment is completely different from BNL/FNAL approach!
- In the E-B field, the more general form of spin precession vector:

$$\vec{\omega}_{a} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

- Our experiment is completely different from BNL/FNAL approach!
- In the E-B field, the more general form of spin precession vector:

$$\vec{\omega}_{a} = -\frac{e}{m} \left[a_{\mu}\vec{B} - \left[a_{\mu} - \frac{1}{\gamma^{2} - 1} \right] \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$
BNL E821 approach
 $\gamma = 30 \ (P = 3 \ GeV/c)$
Magic " γ ": $a_{\mu} = \frac{1}{\gamma^{2} - 1}$
 $\vec{\omega}_{a} = -\frac{e}{m} \left[a_{\mu}\vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$
FNAL E989

- Our experiment is completely different from BNL/FNAL approach!
- In the E-B field, the more general form of spin precession vector:

$$\vec{\omega}_{a} = -\frac{e}{m} \begin{bmatrix} a_{\mu}\vec{B} - \begin{pmatrix} a_{\mu} - \frac{1}{\gamma^{2} - 1} \end{pmatrix} \vec{\beta} \times \vec{E} + \frac{\eta}{2} \begin{pmatrix} \vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \end{pmatrix} \end{bmatrix}$$
Directly remove E field!
$$\vec{p}_{a} = -\frac{e}{m} \begin{bmatrix} a_{\mu}\vec{B} + \frac{\eta}{2} \begin{pmatrix} \vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \end{pmatrix} \end{bmatrix}$$

$$\vec{\omega}_{a} = -\frac{e}{m} \begin{bmatrix} a_{\mu}\vec{B} + \frac{\eta}{2} \begin{pmatrix} \vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \end{pmatrix} \end{bmatrix}$$

$$\vec{\omega}_{a} = -\frac{e}{m} \begin{bmatrix} a_{\mu}\vec{B} + \frac{\eta}{2} \begin{pmatrix} \vec{\beta} \times \vec{B} \end{pmatrix} \end{bmatrix}$$
FNAL E989
$$J-PARC \text{ Error } B = 0 \text{ at any } \gamma$$

Muon beam at BNL/FNAL

Conventional muon beam

Novel thermal muon beam at J-PARC

Conventional muon beam

Re-accelerated thermal Muon beam

Laser ionization of Muonium (122 nm, 355 nm)

Development of thermal muon source

- Muonium yield from silica aerogel has been confirmed
- Novel technique of laser-ablated aerogel was used to enhance the Mu yield

P. Bakule et al., PTEP 103C0 (2013), G. Beer et al., PTEP 091C01 (2014)

Development of thermal muon source

- Now, a demonstration experiment 244 nm laser is being prepared at J-PARC
- It will be world's first time to generate thermal muon by this approach!
- Except for the muon g-2, such thermal muon source has wide application for other muon-related precision experiment

Muon acceleration (LINAC)

0.2

IH-DTL RFQ

transmission loss ~7% + decay loss emittance growth is small

First muon acceleration with RFQ!

S. Bae et al., Phys. Rev. Accel. Beams 21, 050101 (2018)

DAW CCL

10

DLS

 $\varepsilon_{total} = 1.5 \pi \text{ mm mrad}$

30

Z[m]

requirement

20

Muon injection and storage

H. linuma et al., Nucl. Instr. And Methods. A 832, 51 (2016)

Why inject beam 3D spirally?

14 m orbit, To avoid beam hit at inflector (77 mm), kick angle become <u>10.8 mrad</u> within <u>149 ns</u>. 0.66 m orbit kick angle is 233 mrad within 7.4 ns.3 T is too high to be canceled by inflector.Impossible by any existent technology.Need to develop new 3D spiral injection!

Injection efficiency : 3-5%(*)

Injection efficiency : ~85%

(*) PRD73,072003 (2006)

M. A. Rehman, KEK

Positron tracking detector

750 mm

Requirements

- * Detection of e+ (100<E<300 MeV)</p>
- Reconstruction of momentum vector
- * Stability over rate changes (1.4 MHz → 14 kHz)

* Specifications

- * Sensor: p-on-n single-sided strip
- * Number of vanes: 40
- * Number of sensors : 640
- * Number of strips : 655,360
- * Area of sensors : 6.24 m²

Software

- Positron track reconstruction
 - A custom software framework "g2esoft" has been developed.
 - Developed improved tracking performance by connecting disconnected-tracklets, removing ghosts.
 - Evaluating rate-dependent effects in tracking performance.
- End-to-end simulation
 - Statistics increased from 16k muons to 1M (x100).
 - Analysis in progress to study various correlations.
 - Optimization of experimental conditions is in progress.

overview of end-to-end simulation

Expected results

Precision estimation & comparison

	Completed	Running	In preparation	
	BNL-E821	Fermilab-E989	Our Experiment	
Muon momentum	$3.09~{ m GeV}/c$		$300 { m ~MeV}/c$	
Lorentz γ	29.3	}	3	
Polarization	100%	50%		
Storage field	B = 1.4	B = 3.0 T		
Focusing field	Electric qua	Very weak magnetic		
Cyclotron period	149 r	$7.4 \mathrm{~ns}$		
Spin precession period	4.37	$2.11 \ \mu s$		
Number of detected e^+	5.0×10^{9}	1.6×10^{11}	$5.7 imes 10^{11}$	
Number of detected e^-	3.6×10^{9}	—	_	
a_{μ} precision (stat.)	460 ppb	100 ppb	450 ppb (Phase-	
(syst.)	280 ppb	100 ppb	< 70 ppb	
EDM precision (stat.)	$0.2 \times 10^{-19} \ e \cdot \mathrm{cm}$	_	$1.5 \times 10^{-21} \ e \cdot \mathrm{cm}$	
(syst.)	$0.9 imes 10^{-19} \ e \cdot { m cm}$		$0.36 imes 10^{-21} \ e \cdot { m cm}$	

Corrections, Uncertainties on g-2

Farmallah Dun 1

Fermilab Ru	NT	PRL 120, 141001 (2021)				
Quantity	Correction	Terms (ppb)	Uncertainty (ppb)	Fe	rmilab goal	J-PARC estimate
ω_a^m (statistical)	スピン歳差運動 統計誤差		434		100	450
ω_a^m (systematic)	系統誤差	—	56)	100	450
C_e		489	53			
C_p	フレン海美海動城正体、系体担当	± 180	13	108	70	<40
C_{ml}	スヒノ 鼠左連動開止値・糸統鉄2	[∞] -11	5			
C_{pa}		-158	75	J		
$f_{ m calib}\langle \omega_p(x,y,\phi) angle$	$\langle M(x,y,\phi) \rangle$	· _ ·	56	1111	-	-
B_k	磁場測定 系统误差	-27	37	[114	70	56
B_q		-17	92	J		
$\mu_p'(34.7^\circ)/\mu_e$		-	10			
m_{μ}/m_e	変換に用いる物理量	_	22			
$g_e/2$		-	0			
Total systematic		-	157		100	<70
Total fundamenta	al factors	\rightarrow	25			
Totals		544	462		140	460
				21	x BNL	1

DDI 126 1/1001 (2021)

Towards ultimate test of the muon g-2 anomaly

Schedule and milestones

Physics

Run ready

First

result

www.g-2.kek.jp

三部 勉 (Tsutomu Mibe) Current spokesperson <u>mibe@post.kek.jp</u>

Distribution of human resource

110 active collaboration members

- 30% from outside of Japan.
- 65% staff scientists, 18% grad. students.
- Distributed over various subsystems

monitors, theory

From T. Mibe

Summary

- The recent Muon g 2 result from Fermilab shows 4.2 σ deviation between the standard model prediction and the combined measurement.
- A new muon g-2 experiment has been proposed at J-PARC with different approach, aiming at final uncertainty of a_{μ} to be 100 ppb, comparable with FNAL final goal.
- In the new experiment, <u>several novel techniques will be developed</u>, including the re-accelerated thermal muon source, world's first muon RF acceleration, 3D beam injection scheme etc.
- Now, R&D phase is ending and construction phase is starting. <u>Our</u> <u>experiment plan to start the physics run from 2025.</u>

Thank you for your attention!

Outlook: Muon g – 2

Future looks bright – there's much more data still to come

 $\tilde{\omega}_p'(T)$ = Proton Larmor precession frequency in a spherical water sample weighted for muon distribution

Building the hadronic *R*-ratio

R(s)

6 12/03/18 Alex Keshavarzi I The muon g-2: $a_{\mu}^{had, VP}$ update from KNT

Spiral Injection Test Experiment (SITE)

Spiral Injection Test Experiment Setup at KEK Tsukuba Campus

M. A. Rehman ,KEK

Frequency extraction: fitting the modulation

Storage magnet and field measurement

Thermal expansion of yoke has been simulated.

Temperature effect on B-field was evaluated by using a test magnet

US-Japan collaboration on cross calibration of B-field probes. Had a collaboration meeting at J-PARC, Sep 2019.

0.05

End-to-end simulations

Current TDR (2017)

Table 14.1: Efficiency and beam intensity

Quantity	Reference	Efficiency	Cumulative	Intensity (Hz)
Muon intensity at production target	[2]			1.99E+09
H-line transmission	[2]	1.62E-01	1.62E-01	3.22E + 08
Mu emission	[3]	3.82E-03	6.17E-04	1.23E + 06
Laser ionization	[4]	7.30E-01	4.50E-04	8.97E + 05
Metal mesh	[5]	7.76E-01	3.49E-04	6.96E + 05
Init.Acc.trans.+decay	[5]	7.18E-01	2.51E-04	5.00E + 05
RFQ transmission	[6]	9.45E-01	2.37E-04	4.72E + 05
RFQ decay	[6]	8.13E-01	1.93E-04	3.84E + 05
IH transmission	[7]	9.87E-01	1.90E-04	3.79E + 05
IH decay	[7]	9.89E-01	1.88E-04	3.75E + 05
DAW transmission	[8]	9.95E-01	1.87E-04	3.73E + 05
DAW decay	[8]	9.61E-01	1.80E-04	3.58E + 05
High beta transmission	[9]	1.00E + 00	1.80E-04	3.58E + 05
High beta decay	[9]	9.88E-01	1.78E-04	3.54E + 05
Injection transmission	[10]	8.5E-01	1.42E-04	2.83E + 05
Injection decay	[10]	9.9E-01	1.41E-04	2.80E + 05
Detector start time	[10]	9.27E-01	1.30E-04	2.60E + 05
Muon at storage				2.60E + 05

How to inject beam spirally?

To resolve technical challenges a new 3D Spiral Injection scheme has been invented

The Elegance and Advantages

Smooth connection between injection and storage sections: No need of Inflector

- >All in one storage magnet, which reduce source of error fields: No Quad
- No need to kick within a single turn: Simple kicker

However

>Unprecedented

Therefore, it is indispensable to prove the feasibility of this new scheme.

Experimental determination of $a_u = (g-2)/2$

 $a_{\mu} = (g-2)/2$

- $\omega_a\,$: anomalous spin precession frequency
- ω_p : proton's Lamor precession frequency

