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I. GAUGE-INVARIANT DEFINITIONS OF UNPOLARIZED PDFS

The gauge-invariant definitions of unpolarized PDFs are

fi/P (x) =

∫ ∞

−∞

dw−

2π
e−ixP

+w−
〈
P

∣∣∣∣ψi(0+, w−,0T )
γ+

2
WF [w−, 0]ψi(0)

∣∣∣∣P
〉

(1a)

fg/P (x) =

∫ ∞

−∞

dw−

2πxP+
e−ixP

+w−
〈
P
∣∣G+j(0+, w−,0T )WA[w−, 0]G+j(0)

∣∣P
〉

(1b)

where the subscript i means quark of flavor i, and the superscript j = (1, 2) is the trans-

verse Lorentz index of gluon field strength and is summed over. |P 〉 is the proton (or any

hadron/elementary target) state with momentum P . The spin state is not specified; in

fact, the expectation values of unpolarized PDF operators do not depend on the spin of the

target: one can use any pure spin state, or average (weighted or unweighted) over the spin

states.

Some points to note here:

a. Light-Cone Coordinates. We are using light-cone coordinates defined using two

light-cone vectors

nµ =
1√
2

(1, 0, 0,−1), n̄µ =
1√
2

(1, 0, 0, 1)

For a general 4-vector V µ, we define

V + = n · V =
V 0 + V 3

√
2

, V − = n̄ · V =
V 0 − V 3

√
2

, VT = (V 1, V 2) (2)

We generally write V = (V +, V −,VT ). So n = (0+, 1−,0T ), n̄ = (1+, 0−,0T ). The inner

product of two Lorentz vectors V and W is

V ·W = V +W− + V −W+ − VT ·WT , (3)

and in particular,

V 2 = 2V +V − − V 2
T . (4)

b. Dimension counting. Since we will perform the calculation in d-dimensions in dimen-

sional regularization, it is instructive to show that PDFs are dimensionless in d-dimensions.

• Fields.

[ψ] = [ψ̄] =
d− 1

2
=

3

2
− ε, [Aµ] =

d− 2

2
= 1− ε, [Gµν ] =

d

2
= 2− ε. (5)
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• States. The target states |P 〉 are normalized by

〈P ′|P 〉 = (2π)d−12EP δ
d−1(P − P ′), (6)

so

[ |P 〉 ] = [ 〈P | ] =
1

2
(1 + 1− d) = −1 + ε. (7)

• Wilson Lines. Since Wilson line is an exponentiatial of a dimensionless quantity, it

does not carry dimension.

• PDFs.

[fq(x)] = −1 + 2(−1 + ε) + 2

(
3

2
− ε
)

= 0; (8)

[fg(x)] = −1− 1 + 2(−1 + ε) + 2 (2− ε) = 0. (9)

The first −1 terms in both equations come from the integration measure of w−, which

is the light-cone coordinate, and the second −1 term in (9) is from the 1/P+ factor.

This shows the necessity of adding 1/P+ factor in the definition of gluon density,

while the 1/x is added to give fg(x) a correct probability interpretation, which will be

confirmed in deriving the sum rule.

c. Wilson Lines.

(
WF [w−, 0]

)
jk

= P exp

{
−ig

∫ w−

0

dy−A+
a (0+, y−, 0T )(T aF )jk

}
(10)

(
WA[w−, 0]

)
bc

= P exp

{
−ig

∫ w−

0

dy−A+
a (0+, y−, 0T )(T aA)bc

}
(11)

where j, k are color indices in the fundamental representation and b, c are color indices in

the adjoint representation:

j, k = 1, · · · , Nc; b, c = 1, · · · , N2
c − 1

TF and TA are generators of the fundamental and adjoint representations, respectively, and

especially1,

(T aA)bc = −ifabc.

1 Throughout this note, we do not distinguish upper and lower indices of the color factors, i.e., fabc =

fabc = fabc, etc.
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The Wilson lines collect (the component n·A of) gluon fields along the light cone direction

n. For a fixed path, the Wilson line only depends on the two end points 0 and w−. Under

a gauge transformation, the Wilson line transforms as

WR(a, b)→ W ′
R(a, b) = UR(a)WR(a, b)UR(b)−1 (12)

where UR(x) = exp{−iθa(x)T aR} is the gauge transformation for an arbitrary representation

R and WR(a, b) is the corresponding Wilson line. Note that the generators of adjoint rep-

resentations are purely imaginary, so the gauge transformation UA(x) ≡ D(x) is real, and

thus

D(x)T = D(x)−1 (13)

d. Gauge Invariance. We have left the color indices implicitly summed over in Eq. (1).

The fields transform under gauge transformations as 2

ψ(x)j → U(x)jk ψ(x)k, ψ(x)j → ψ(x)k[U(x)†]kj (14)

Gµν
a (x)→ D(x)abG

µν
b (x) (15)

Therefore, when inserting the Wilson lines in Eq. (1), the operators transform as 3

ψj(w
−)
(
WF [w−, 0]

)
jk
ψk(0)

→ψj̄(w−)
[
U †(w−)

]
j̄j

{
U(w−)jl

(
WF [w−, 0]

)
lm

[
U(0)†

]
mk

}
[U(0)]kk̄ ψk̄(0)

=ψj(w
−)
(
WF [w−, 0]

)
jk
ψk(0), (16)

and

G+j
b (w−)

(
WA[w−, 0]

)
bc
G+j
c (0)

→
{
Dbb̄(w

−)G+j

b̄
(w−)

}{
Dbd(w

−)
(
WA[w−, 0]

)
de
DT (0)ec

}{
Dcc̄(0)G+j

c̄ (0)
}

=G+j

b̄
(w−)

{
DT (w−)b̄bDbd(w

−)
} (
WA[w−, 0]

)
de

{
DT (0)ecDcc̄(0)

}
G+j
c̄ (0)

=G+j
b (w−)

(
WA[w−, 0]

)
bc
G+j
c (0), (17)

showing manifest gauge invariance. This also demenstrates that we need to sum over the

color indices in order to get gauge invariant PDFs.

2 My convention is that U(x) = UF (x) and D(x) = UA(x) are the gauge transformations of fundamental

and adjoint representations, respectively.
3 Here we suppress the flavor index of quark field. The subscripts j, k are color indices.
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e. Lorentz Invariance. Although we can see explicit Lorentz indices (+ and j) in

Eq. (1), the definitions are in fact Lorentz invariant. To see that, we can write them in

Lorentz covariant forms

fi/P (x) =

∫ ∞

−∞

dλ

2π
e−ixλ(n·P )

〈
P
∣∣∣ψi(λn)

γ · n
2

WF [λn, 0]ψi(0)
∣∣∣P
〉

(18a)

fg/P (x) =

∫ ∞

−∞

dλ

2πx(n · P )
e−ixλ(n·P ) 〈P |nµGµν(λn)WA[λn, 0]Gν

ρ(0)nρ|P 〉 (18b)

This makes it explicit that thus defined PDFs are scalars made up of n and P . Since they

are also invariant with a scaling of n→ αn, the PDFs do not depend on the choice of n, as

long as it is a light-like vector pointing to the future direction. 4

By the definition itself, the PDFs are Lorentz invariant. However, when deriving spe-

cific factorization formulae, n usually comes as a natural choice. For example, when P is

highly boosted along +z direction, P+(� P−, PT ) is the large component, and we choose

n = (0, 1, 0T ). When P is highly boosted along −z direction, P−(� P+, PT ) is the large

component, and then we choose n as n̄ = (1, 0, 0T ), which gives

fi/P (x) =

∫ ∞

−∞

dw+

2π
e−ixP

−w+

〈
P

∣∣∣∣ψi(w+, 0−,0T )
γ−

2
WF [w+, 0]ψi(0)

∣∣∣∣P
〉

(19a)

fg/P (x) =

∫ ∞

−∞

dw+

2πxP−
e−ixP

−w+ 〈
P
∣∣G−j(w+, 0−,0T )WA[w+, 0]G−j(0)

∣∣P
〉

(19b)

This form is useful when dealing with hadron-hadron collisions.

A. Interpretation as cut amplitude

Since the operators defining the PDFs in Eq. (1) are not time ordered, they correspond

to cut amplitudes. To see this, we first write the Wilson line as

Wn(w−, 0) = Wn(w−,∞)Wn(∞, 0) (20)

each one still aligning along the n direction, indicated by the subscript ‘n’. Then the matrix

elements are

〈P |ψi(w−)
γ+

2
WF [w−, 0]ψi(0)|P 〉

=
∑

X

〈
P
∣∣ψi(w−)W n

F [w−,∞]
∣∣X
〉 γ+

2
〈X |W n

F [∞, 0]ψi(0)|P 〉 (21)

4 Pointing n to the past direction amounts to n → −n, which changes λ to −λ everywhere. This reverses

the integration direction to ∞→ −∞ and introduces an extra minus sign.
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〈
P
∣∣G+j(w−)WA[w−, 0]G+j(0)

∣∣P
〉

=
∑

X

〈
P
∣∣G+j(w−)W n

A[w−,∞]
∣∣X
〉 〈
X
∣∣W n

A[∞, 0]G+j(0)
∣∣P
〉

(22)

〈X |W n
F [∞, 0]ψi(0)|P 〉 is the amplitude of annihilating a quark of flavor i (with ψi) in the

proton (and possible gluons with the Wilson line W n
F [∞, 0]) and creating a final state |X〉.

〈
P
∣∣ψi(w−)W n

F [w−,∞]
∣∣X
〉

corresponds to its Hermitian conjugate. So the normal ordering

corresponds to an amplitude squared, with a sum over the final states. In terms of diagrams,

we use a cut line to label on-shell final states and a sum over them.

We denote

ML =

0 ∞

· · ·
P PX

= 〈X |W n
F [∞, 0]ψi(0)|P 〉 (23)

as the amplitude of annihilating a quark from a proton and arriving at the final state X,

and

MR =
PX P

· · ·
0∞

=
〈
P
∣∣ψi(0)W n

F [0,∞]
∣∣X
〉

= M †
Lγ

0 (24)

as its Hermitian conjugate. Summing over the final states X, with a δ function (2π)4δ4(P −
PX − k) (and a parton vertex Γ) gives the probability of getting a quark of momentum k

∑

X

(2π)4δ4(P − PX − k)MRΓML ≡
0 ∞

· · ·
P PX PX P

· · ·
0∞

=
∑

X

∫
d4w ei(P−PX−k)·w 〈P

∣∣ψi(0)W n
F [0,∞]

∣∣X
〉

Γ 〈X |W n
F [∞, 0]ψi(0)|P 〉

=
∑

X

∫
d4w e−ik·w

〈
P
∣∣ψi(w)W n

F [w,∞]
∣∣X
〉

Γ 〈X |W n
F [∞, 0]ψi(0)|P 〉

=

∫
d4w e−ik·w

〈
P
∣∣ψi(w) ΓW n

F [w, 0]ψi(0)
∣∣P
〉

(25)
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where 5 we have defined the cut as

cut line = put on-shell and
∑

X

(2π)4δ4(P − PX − k) (26)

Then integrating over k with a δ function gives the quark parton density

fi/P (x) =

∫
d4k

(2π)4
δ(k+ − xP+)

{∫
d4w e−ik·w

〈
P

∣∣∣∣ψi(w)
γ+

2
W n
F [w, 0]ψi(0)

∣∣∣∣P
〉}

=

∫
d4k

(2π)4
δ(k+ − xP+)

k k

P P

i i· · · · · · (27)

The diagram is a cut diagram (in momentum space) with momentum k flowing out of the

composite quark-link vertex to the left of the cut line and into the vertex to the right. The

parton density is obtained by integrating over the momentum k, with a δ(k+− xP+) factor

to fix k+. Note that the k is not necessarily the momentum carried by the parton line.

Similarly, the gluon density is

fg/P (x) =

∫
d4k

(2π)4

1

xP+
δ(k+ − xP+)

{∫
d4w e−ik·w

〈
P
∣∣G+j(w)W n

A[w, 0]G+j(0)
∣∣P
〉}

=

∫
d4k

(2π)4

1

xP+
δ(k+ − xP+)

k k

P P

· · · · · · (28)

Note that we have added the γ+/2 and 1/xP+ factors (and an implicit factor δjj′ to sum

over the gluon spins) into the definitions. We call them parton vectices. They are to project

out certain parton densities from the general cut amplitude.

This understanding is the first step in calculating parton densities from their definitions.

First we calculate the cut amplitude, and then integrate over the momentum k

with appropriate parton vertices and δ(k+ − xP+).

5 One should note that we have tacitly identified those two ∞ points with each other in Eq. (25) after

summing over states X in the last step. This is not completely justified, because we keep using Wilson

lines along n direction, so if w has non-zero + or transverse components, these two Wilson lines will not

meet at infinity. However, since we are going to integrate over k− and kT , this issue is not a big problem.

This only requires careful treatment when dealing with kT dependent parton densities, where only k− is

to be integrated over.
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Note: The external parton lines are NOT amputated or on shell. We need to assign

propagators to them and include high-order corrections.

B. Anti-quark PDF

The above discussion from Eq. (23) to (27) is easy to be generalized to anti-quark PDF

with the replacement

ML →
〈
X
∣∣ψi(0)W n

F [0, ∞]
∣∣P
〉
, MR → 〈P |W n

F [∞, 0]ψi(0)|X〉 . (29)

This leads to

fī/P (x) =

∫ ∞

−∞

dw−

2π
e−ixP

+w−trcolorTrspin

[
γ+

2

〈
P
∣∣W n

F [∞, w−]ψi(0
+, w−,0T )ψi(0)W n

F [0, ∞]
∣∣P
〉]

=

∫ ∞

−∞

dw−

2π
e−ixP

+w−trcolorTrspin

[
γ+

2

〈
P
∣∣W n

F [0, w−]ψi(0
+, w−,0T )ψi(0)

∣∣P
〉]

(30)

=

∫
d4k

(2π)4
δ(k+ − xP+) īī · · · · · ·

k k

P P
(31)

which only differs from Eq. (27) in reversing the fermion line arrows.

Now we assume that fields along the minus n light cone commute or anticom-

mute. 6 This gives that

fī/P (x) = −
∫ ∞

−∞

dw−

2π
e−ixP

+w−tr

[
γ+

2

〈
P
∣∣ψi(0)W n

F [0, w−]ψi(w
−)
∣∣P
〉]

= −
∫ ∞

−∞

dw−

2π
e−ixP

+w−
〈
P

∣∣∣∣ψi(−w−)
γ+

2
W n
F [−w−, 0]ψi(0)

∣∣∣∣P
〉

= −
∫ ∞

−∞

dw−

2π
e+ixP+w−

〈
P

∣∣∣∣ψi(w−)
γ+

2
W n
F [w−, 0]ψi(0)

∣∣∣∣P
〉

= −fi/P (−x) (32)

where in the second line we used the translation invariance to translate the operator by w−.

Note that we have not only used the anticommutation relation between fermion fields, but

6 This is actually not an assumption. There are several ways to justify it. For an example, light-cone

quantization takes it as the starting point. Another way is to regard the light-cone as a limit of space-like

separation, for which the fields commute or anticommute. I am not able to give a fully-justified argument

within the canonical quantization formalism.
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also that fermion fields commute with the gluon fields (in the Wilson line) along the n light

cone.

Gluon is its own antiparticle. By using the commutation relation we also have

fg/P (x) =

∫ ∞

−∞

dw−

2πxP+
e−ixP

+w−
〈
P
∣∣G+j

c (0)G+j
b (w−)WA[w−, 0]bc

∣∣P
〉

=

∫ ∞

−∞

dw−

2πxP+
e−ixP

+w−
〈
P
∣∣∣G+j

c (0)
(
WA[w−, 0]

)T
cbG

+j
b (w−)

∣∣∣P
〉

=

∫ ∞

−∞

dw−

2πxP+
e−ixP

+w−
〈
P
∣∣G+j

c (0)
(
WA[0, w−]

)
cb
G+j
b (w−)

∣∣P
〉

=

∫ ∞

−∞

dw−

2πxP+
e−ixP

+w−
〈
P
∣∣G+j

c (−w−)
(
WA[−w−, 0]

)
cb
G+j
b (0)

∣∣P
〉

=

∫ ∞

−∞

dw−

2πxP+
e+ixP+w−

〈
P
∣∣G+j

c (w−)
(
WA[w−, 0]

)
cb
G+j
b (0)

∣∣P
〉

= −
∫ ∞

−∞

dw−

2π(−x)P+
e−i(−x)P+w−

〈
P
∣∣G+j

c (w−)
(
WA[w−, 0]

)
cb
G+j
b (0)

∣∣P
〉

= −fg/P (−x) (33)

Note that on the third line we have used the fact that the Wilson line in the adjoint repre-

sentation is real, cf. Eq. (13). We used the commutation relation between transverse gluon

field components, and between transverse components and + components (in the Wilson

line). To summarize, we have

fj̄/P (x) = −fj/P (−x) (34)

for j = q, g. This can be verified/used also in perturbative PDFs.

C. Support Property

Eq. (34) can be used to prove another property of PDF, that is,

fj/P (x) 6= 0 only when − 1 ≤ x ≤ 1 (35)

First, from Eq. (25) we see that the momentum flowing to the final state X is P − k. Since

|X〉 is a physical on-shell state, it must have a positive P+
X momentum component, so

(P − k)+ = (1− x)P+ ≥ 0 (36)

and thus

x ≤ 1 (37)
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This comes from the cut-amplitude interpretation and holds for both parton and anti-parton

PDFs. It seems that there is no constraint when x < 0. However, when x < 0 it can be

connected to the anti-parton PDF. From Eq. (34), we have

fj/P (x) = −fj̄/P (−x) (38)

where the right-hand side is non-zero only when −x ≤ 1, i.e., x ≥ −1. Therefore, we get

Eq. (35).

D. Interpretation as un-cut diagram

The commutation/anticommutation relations also mean that we can add time ordering

to the operators without changing the matrix elements, so Eq. (1) can also be written as

fi/P (x) =

∫ ∞

−∞

dw−

2π
e−ixP

+w−
〈
P

∣∣∣∣T
{
ψi(0

+, w−,0T )
γ+

2
WF [w−, 0]ψi(0)

}∣∣∣∣P
〉

(39a)

fg/P (x) =

∫ ∞

−∞

dw−

2πxP+
e−ixP

+w−
〈
P
∣∣T
{
G+j(0+, w−,0T )WA[w−, 0]G+j(0)

}∣∣P
〉

(39b)

The time-ordering means that we can connect them to uncut diagrams. That is, we can

remove the cut lines in Eq. (27)(28)(31). This can be verified by explicit calculations.

At calculation level, the equivalence between uncut diagrams and cut diagrams is due to the

integration over k−. The integral over k− is non-zero only when k− has poles on different

sides of the real axis in complex plane. That sets x to be between −1 and 1. When the

integrand does have poles on different sides, the selection of a certain pole is equivalent to

cutting the corresponding propogator.

II. MULTIPLICATIVE RENORMALIZATION

The PDFs defined in Eq. (1) are bare PDFs, defined using bare fields. They contain UV

divergences and require renormalization. The renormalization of PDF is separate from QCD

renormalization. It goes by removing the UV divergences from the perturbative expansion.

The result turns out to be multiplicative

fj/P (x) =
∑

j′

∫ 1

x

dz

z
Zjj′

(x
z

)
f

(0)
j′/P (z) (40)
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Here we use explicit superscript ‘(0)’ to indicate that f
(0)
j′/P (z) is the bare PDF defined with

bare fields. Zjj′ (z) is a convolution factor that removes the UV divergences in f
(0)
j′/P (z). The

convolution form suggests that the UV divergences are functions of x. In MS scheme, we

will only remove divergence proportional to

1

ε
− γ + ln 4π

Following Collins’ book [1], we write this factor as

Sε
ε
≡ (4π)ε

Γ(1− ε)
1

ε
=

1

ε
− γ + ln 4π +O(ε) (41)

It is convenient to do the calculation using renormalized fields, for which the Feynman

rules are with renormalized couplings plus counterterm interactions. So we rewrite Eq. (40)

as

fj/P (x) =
∑

j′

∫ 1

x

dz

z
Zjj′

(x
z

)
Z2j′

(
Z−1

2j′ f
(0)
j′/P (z)

)
(42)

where Z2j′ is the field renormalization factor of field j′, and
(
Z−1

2j′ f
(0)
j′/P (z)

)
stands for PDFs

defined with renormalized fields (we do not introduce extra symbols to avoid confusion).

Later in the specific calculations, we write f
(0)
j/P (z) to mean

(
Z−1

2j f
(0)
j/P (z)

)
, also to avoid

cumbersome notations.

Since Zjj′(z) does not depend on the target property, we are allowed to use on-shell

parton state as an elementary target. For that we have

fj/k(x) =
∑

j′

∫ 1

x

dz

z
Zjj′

(x
z

)
Z2j′

(
Z−1

2j′ f
(0)
j′/k(z)

)
(43)

At leading order (LO), there is no divergence, and we have (see Eq. (128) below)

f
[0]
j/k(x) = f

[0]
(0)j/k(x) =

(
Z−1

2j f
(0)
j/k

)[0]

(x) = δjkδ(1− x) (44)

where the superscript ‘[n]’ means at n-th order of αs. This gives

Z
[0]
jj′(z) = δjj′δ(1− z) (45)

11



At next-to-leading order (NLO), we have

f
[1]
j/k(x) =

∑

j′

∫ 1

x

dz

z

{[
Zjj′

(x
z

)
Z2j′

][1] (
Z−1

2j′ f
(0)
j′/k

)[0]

(z) +
[
Zjj′

(x
z

)
Z2j′

][0] (
Z−1

2j′ f
(0)
j′/k

)[1]

(z)

}

=
∑

j′

∫ 1

x

dz

z

{[
Zjj′

(x
z

)
Z2j′

][1]

δj′kδ(1− z) + δjj′δ(1− x/z)
(
Z−1

2j′ f
(0)
j′/k

)[1]

(z)

}

= [Zjk (x)Z2k]
[1] +

(
Z−1

2j f
(0)
j/k

)[1]

(x)

= [Zjk (x)][1] Z
[0]
2k + [Zjk (x)][0] Z

[1]
2k +

(
Z−1

2j f
(0)
j/k

)[1]

(x)

=
(
Z−1

2j f
(0)
j/k

)[1]

(x) + [Zjk (x)][1] + δjkδ(1− x)Z
[1]
2k (46)

The determination of [Zjk (x)][1] is through the third line, where we use [Zjk (x)Z2k]
[1] to

remove the UV divergence in
(
Z−1

2j f
(0)
j/k

)[1]

(x), and then by substracting Z
[1]
2k we can get

[Zjk (x)][1].

A. Evolution of PDFs

The renormalization of bare PDFs introduce a renormalization scale µ, and therefore fj/P

and Zjj′ depend on µ. Since the bare PDFs defined in terms of bare fields do not depend

on µ, we have the renormalization group equation for renormalized PDFs

µ2 d

dµ2
fj/P (x) =

∑

j′

∫ 1

x

dz

z
Pjj′

(x
z

)
fj′/P (z) (47)

where Pjj′ comes through Zjj′ by

µ2 d

dµ2
Zjk(z) =

∑

j′

∫ 1

z

dz′

z′
Pjj′

( z
z′

)
Zj′k(z

′) (48)

At LO, by Eq. (45), we have

P
[0]
jj′(z) = 0 (49)

At NLO Eq. (48) gives

µ2 d

dµ2
Z

[1]
jk (z) =

∑

j′

∫ 1

z

dz′

z′

{
P

[1]
jj′

( z
z′

)
Z

[0]
j′k(z

′) + P
[0]
jj′

( z
z′

)
Z

[1]
j′k(z

′)
}

= P
[1]
jk (z) (50)

We will see that at NLO, Z
[1]
jk (z) depends on µ through αs(µ)

dZ
[1]
jk (z)

d lnµ2
=

dαs
d lnµ2

dZ
[1]
jk (z)

dαs
= (−ε αs)

Z
[1]
jk (z)

αs
= −εZ [1]

jk (z) (51)
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where we only kept the relevant term at order O(αs). When taking ε → 0, this is equal to

P
[1]
jk (z), and hence we have (at MS scheme)

Z
[1]
jk (z) = −Sε

ε
P

[1]
jk (z) (52)

III. FEYNMAN RULES

Apart from the Feynman rules for the usual propagators and QCD vertices, there are

three more elements involved in the PDFs: 1) parton vertices, 2) gluon vertex arising from

the field strength, and 3) Wilson lines. Finally, we will also discuss the rules concerning the

cut line.

1. Parton Vertices

The discussion of this has been covered in Sec. I. We list the results here

fi/P (x) =

∫
d4−2εk

(2π)4−2ε
δ(k+ − xP+)Tr

γ+

2

k k

P P

i i· · · · · · (53a)

fg/P (x) =

∫
d4−2εk

(2π)4−2ε
δ(k+ − xP+)

1

xP+
δjj′ · · · · · ·

k, j′ k, j

P P
(53b)

We call the factors in red fonts parton vertices.

2. Gluon vertex arising from the field strength

Due to gauge invariance, the external parton point (the “point” of the parton fields, in

the same context as “2-point Green function”) is not a single point, but a composite vertex

of the parton field and gauge link. For the quark case, since we use quark field ψ or ψ to

annihilate or create a quark parton, there is no special vertex when the quark parton line

13



p, j p, j

k

p− k, j p− k, j

k

FIG. 1: Quark-link vertex = 1. Momentum and color conserve here. Momentum k flows out to

the left of the cut and flows in to the right of the cut. j is the color index in the fundamental

representation.

q, µ, a

k, j′

q − k, a

−i
(
k+gj

′
µ − qj

′
nµ

)

q, µ, aq − k, a

k, j

i
(
k+gjµ − qjnµ

)

FIG. 2: Gluon-link vertex. Momentum and color conserve here. Momentum k flows out to the

left of the cut and flows in to the right of the cut. j, j′ are the transverse Lorentz indices that are

extracted out at the vertices. a is the color index in the adjoint representation.

meets the gauge link. One just needs to remember that the color and momentum flowing

through this vertex is conserved. This rule is summarized in Fig. 1.

For the vertex connecting gluon parton line and the gauge link, it is different, because we

use G+j(x) instead of Aj(x) to create or annihilate gluons. To the left of the cut line, since

G+j
a (x) = ∂+Aja(x)− ∂jA+

a (x)− gfabcA+
b (x)Ajc(x) (54)

at the vertex where a gluon with momentum q, polarization index µ and color a is annihi-

lated, the first two terms give

−iq+gjµ − (−iqj)g+
µ = −i

(
q+gjµ − qjnµ

)

Color index a flows through the gauge link smoothly. The third term in G+j
a (x) means that

we can also have two gluon lines connecting to the gauge link at the same point, one carrying

14



longitudinal polarization + and the other carrying transverse component j. This may sound

complicated, but is not new, because the gluon lines attached to the gauge link can meet the

gluon parton line at the edge of the gauge link, and they all carry longitudinal polarization

+. In fact, we can assign the third term into the gauge link by using the relations

∂+
x (W n

A[x, y])ab = −g fcadA+
c (W n

A[x, y])db (55)

∂+
x

(
Aja(x)W n

A[x, y]ab
)

=
(
∂+Aja − g fadeA+

d (x)Aje(x)
)
W n
A[x, y]ab (56)

Thus the first and third terms in G+j
a (x) can be combined with the Wilson line into Eq. (56).

This whole term annihilates a gluon with momentum q, polarization index µ and color a,

and possibly other longitudinal gluons which we assign to the Wilson line, at the vertex

x = 0, and in total annihilates momentum k at this vertex (q − k flows to the gauge link).

Therefore, the vertex is

− ik+gjµ − (−iqj)g+
µ = −i

(
k+gjµ − qjnµ

)
(57)

where the first term comes from the whole term in Eq. (56), and the second term comes

from the second term in Eq. (54). The vertex to the right of the cut line can be obtained

by taking a Hermitian conjugate. These are summarized in Fig. 2.

3. Wilson line

We use a double line to denote the Wilson line which collects collinear longitudinal gluons.

This notation makes it look like a new kind of propogator, but in fact it is not. Propogators

arise from the contraction of two fields and there are momenta flowing along them, but

Wilson line is just a line where (an infinite number of) gluon fields are situated. That said,

we will find propagator-like Feynman rules for the Wilson line and it can be interpreted as

momenta flowing along the Wilson line. So we equivalently regard Wilson line as a special

kind of propogator and assign momentum to it.

A certain diagram corresponds to a certain way of Wick contraction of time-ordered fields.

7 For a diagram with n gluons attached to the Wilson line (to the left of the cut line), it

7 Since on each side of the cut line, we only have one coordinate, we can equivalently add a time-ordering

operator so that the diagram on each side of the cut line is the usual Feynman diagram. Note that the

path ordering in the Wilson line commutes with time-ordering operator.
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comes from the term in the expansion of W that contains n gluon fields 8

W [∞, 0] ⊃ 1

n!
P

n∏

i=1

{
−ignµi

∫ ∞

0

dλiA
µi
ai

(λin)tai

}

= (−ignµntan) · · · (−ignµ1ta1)
∫ ∞

0

dλ1

∫ ∞

λ1

dλ2 · · ·
∫ ∞

λn−1

dλnA
µn
an (λnn) · · ·Aµ1a1 (λ1n)

(58)

where the path ordering gives n! identical terms that cancel the 1/n! factor. The factor

(−ignµitai) becomes the Feynman rule for the vertex where gluon i attaches to the gauge link.

Each A field creates a corresponding gluon, in the order that gluon lines attach to the gauge

link, following the path ordering rule. Suppose A
µj
aj (λjn) creates a gluon with momentum

kj. (This kj flows out of the Wilson line vertex and is treated as a loop momentum.) Then

apart from the gluon propagator associated with this gluon line, we pick up a factor

eiλjn·kj .

So besides the usual Feynman rules of QCD couplings and propagators, Wilson line gives

extra vertices

−ignµj taj

and the factor

F =

∫ ∞

0

dλ1

∫ ∞

λ1

dλ2 · · ·
∫ ∞

λn−1

dλn

n∏

j=1

e+iλjn·kj (59)

Using ∫ ∞

z

eiky =
i

k + iε
eikz (60)

we have

F =

∫ ∞

0

dλ1

∫ ∞

λ1

dλ2 · · ·
∫ ∞

λn−2

dλn−1

(
n−1∏

j=1

e+iλjn·kj

)∫ ∞

λn−1

dλne
+iλnn·kn

=

∫ ∞

0

dλ1

∫ ∞

λ1

dλ2 · · ·
∫ ∞

λn−2

dλn−1

(
n−1∏

j=1

e+iλjn·kj

)
i

n · kn + iε
eiλn−1n·kn

=
i

n · kn + iε
· i

n · (kn + kn−1) + iε
· · · i

n · (kn + · · ·+ k1) + iε
(61)

8 The g and A here are bare coupling and bare gluon field.
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In terms of diagrams, the Feynman rule for Wilson line to the left of the cut is

k1 k2 kn· · ·

knk1 + · · ·+ kn k2 + · · ·+ kn

µn, anµ2, a2µ1, a1

=(−ignµntan)
i

n · kn + iε
(−ignµn−1tan−1)

i

n · (kn + kn−1) + iε

× · · · × (−ignµ1ta1)
i

n · (kn + · · ·+ k1) + iε
(62)

where we have assigned momenta to each segment of the Wilson line. One link segment

with momentum k gives exactly a “propagator”

i

n · k + iε
(63)

with n being the direction of the Wilson line pointing to infinity.

Similarly, we have the rule for the Wilson line to the right of the cut line, being just the

Hermitian conjugate

kn k2 k1

kn k1 + · · ·+ knk2 + · · ·+ kn

µn, an µ2, a2 µ1, a1

=(ignµ1ta1)
−i

n · (kn + · · ·+ k1)− iε(ignµ2ta2)
−i

n · (kn + · · ·+ k2)− iε
× · · · × (ignµntan)

−i
n · kn − iε

(64)

The above derivation is true for any representation. For quark PDF, it is the fundamental

representation and ta = ((ta)jk). For gluon PDF, it is adjoint representation and ta =

(−ifabc). From our discussion, it is clear that there is no momentum flowing to or from ∞
through the Wilson line. In other words, in a cut diagram, no momentum flows across the

cut line through the gauge link.

The Feynman rules are collected in Fig. 3-5. It is important that n appears both in the

propagators and the vertices, as is necessary to guarantee Ward identity.
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ij

a, µ

−ignµ(T a)ij

ij

a, µ

ignµ(T a)ij

FIG. 3: The Wilson line vertex for quark PDF. T a (a = 1, · · · , N2
c − 1) are the generators of the

fundamental representation. i, j = 1, · · · , Nc are color indices in the fundamental representation.

By putting a cut line we do not mean that the two parts are Hermitian conjugate to each other,

but only that the rules follow according to their positions with respect to the cut line.

bc

a, µ

−gnµfabc

bc

a, µ

+gnµfabc

FIG. 4: The Wilson line vertex for gluon PDF. fabc (a, b, c = 1, · · · , N2
c − 1) is the structure

constant of the color group. It comes by replacing T a in Fig. 3 by −ifabc, corresponding to the

adjoint representation. Note the ‘+’ sign to the right of the cut line. By putting a cut line we do

not mean that the two parts are Hermitian conjugate to each other, but only that the rules follow

according to their positions with respect to the cut line.

i
n·k+iε

k

−i
n·k−iε

k

FIG. 5: The Wilson line propagator. No momentum flows across the cut line throught the Wilson

line.
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4. Cut rules

a. Feynman rules for the diagram on the right of the cut line. The amplitude on the

right of the cut line should be understood as the complex conjugate of the part on the left.

For a basic process like qi(k) + ga(q)→ qj(k
′), the amplitude is

MqL =

k, j

k′, i

q, a

= ū(k′)
(
−igµεγµT aij

)
u(k)εµ(q) (65)

where a, i, j are color indices. Taking a Hermitian/complex conjugate gives

M∗
qL = ū(k)

(
igµεγµT a∗ij

)
u(k′)ε∗µ(q) = ū(k)

(
igµεγµT aji

)
u(k′)ε∗µ(q) (66)

which can be naturally understood as its the inverse process qj(k
′) → qi(k) + ga(q), with i

changed to −i in the vertex, i.e.,

M∗
qL =

k, j

q, a

k′, i ≡MqR (67)

where we add a cut line to indicate the change of Feynman rules for the amplitude to its

right. Note that this simple rule relies on T a being a Hermitian matrix, and that there is a

γ0 factor defined in ū, which keeps γµ as γµ. When there is a chain of γ matrices like

ū(k′)γµ1γµ2 · · · γγnu(k) (68)

the complex conjugate simply gives

ū(k)γµn · · · γµ2γγ1u(k) (69)

corresponding perfectly to the inverse process. So as a first (not complete) rule, we remember

that for the vertices to the right of the cut we replace all i to −i. When there involve

propagators, it is also true, because propagators only add some γ matrices and c-number
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coefficients. When taking a complex conjugate, we simply reverse the process and replace

all i to −i.
We emphasize the importance of Hermiticity of T aij. Taking a complex conjugate gives

T a∗ij = (T a†)ji = T aji (70)

so keeping the form of T a naturally reverse the initial and final states. Confusion can arise

when we deal with the adjoint representation, for which the generator (T aA)bc = −ifabc where

fabc is real. The −i cancels the i in the vertex and then there is no factor of i in the vertex.

But note that when writing down (T aA)bc, b is the color index of the final state particle and c

is of initial state particle, 9 while when reversing the process to the right of the cut line, b, c

ordering becomes opposite. Then when writing down the amplitude we should have (T aA)cb,

which finally gives −fabc. This effect appears in the coupling of gluon to the gauge link, and

gluon-ghost vertex.

Another complication arises when the vertex depends on momenta, like scalar QED/QCD

vertex and tri-gluon vertex. Still taking the simple process q̃i(k) + ga(q)→ q̃j(k
′), in which

q̃ stands for a scalar colored particle, we have the amplitude

MsL =

k, j

k′, i

q, a

= (−igµε) (k′ + k)µ T aij εµ(q) (71)

where a, i, j are color indices. Taking a Hermitian/complex conjugate gives

M∗
sL = (igµε) (k′ + k)µ T a∗ij ε

∗
µ(q) = (igµε) (k′ + k)µ T aji ε

∗
µ(q) (72)

to be understood as the inverse process q̃j(k
′)→ q̃i(k) + ga(q) with i taken to be −i, i.e.,

M∗
sL =

k, j

q, a

k′, i ≡MsR (73)

9 By “initial” and “final” states, we are refering to the simple process like in Eq. (65) where only three

particles are involved. The exact meaning is of (bc) ordering is the order we write down the Feynman

amplitude.
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This still follows the rule stated above. However, for tri-gluon vertex, this is more complex.

The process process ga(q) + gb(k)→ gc(k
′) has the amplitude

MgL =

k, b, ν

k′, c, ρ

q, a, µ

= −gfabc [(q − k)ρgµν + (k + k′)µgνρ + (−k′ − q)νgρµ] (74)

where we have omitted the polarization vectors and the µε factor. It has the structure that

can be schemetically written as

fabc
[
(a− b)c + (b− c)a + (c− a)b

]
(75)

Both fabc and the momentum tensor are cyclic and antisymmtric with any two elements. So

it does not matter whether we write clockwise or counter-clockwise, or which leg we start

with. But it does matter when we reverse all the momenta, which gives a minus sign. On

the one hand, the complex conjugate ofMgL is itself. On the other hand, when we take its

inverse process and reverse all the momenta, as is conventional for a cut diagram, we result

in

MgR =M∗
gL =

k, b, ν

q, a, µ

k′, c, ρ

= −gfabc [(q − k)ρgµν + (k + k′)µgνρ + (−k′ − q)νgρµ]

= gfabc [(−q + k)ρgµν + (−k − k′)µgνρ + (k′ + q)νgρµ] (76)

where we have written the amplitude to the right of the cut line in the usual Feynman rules,

which causes the extra minus sign.

The complication of trigluon coupling is because the three gluons are identical so that

there is no way to tell which one is the “gauge boson” and which ones are the “colored

particles” engaging in the strong interactions in the adjoint representation. In fact, the

trigluon coupling is a cyclic version of the scalar QCD coupling. For example, in Eq. (74)

we can first regard (q, a, µ) as the gauge boson and the other two as the colored particles in
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adjoint representations, which gives us the coupling

MgL ⊃ (−ig)(−ifacb)(k′ + k)µ(−gρν) (77)

which resembles the scalar QCD interaction with just an extra (−gρν) factor indicating the

vector property of the gluons. By cycling (abc), we can get the full expression in Eq. (74).

At this stage, we can understand the difference made by fabc. Although fabc is real and does

not change by complex conjugation, it is (−ifabc) = (T aA)bc, the adjoint representation, that

corresponds to the Hermitian generator Tij in other representations. By the same rule when

taking complex conjugate, we should also reverse i and j, and here we need to reverse b and

c, i.e.,

− gfabc = (−ig)(−ifabc) = (−ig)(T aA)bc
complex−−−−−→
conjugate

(ig)(T aA)cb = gfacb (78)

The order of (acb) corresponds more naturally to the reversed diagram. So the minus sign

comes from the same origin as the previous quark and scalar case, by reversing the sign of

i by −i in the vertex. It is just that the i is hidden in writting fabc explicitly. So we add

a rule that when there is a fabc factor in the coupling, we add a minus sign. This does not

affect the four-gluon coupling since there we have an explicit i factor and two fabc, so the

net effect is only replace i by −i.
The above discussion is sufficient for the cut rules on the right of the cut line. But for PDF,

we need to prove another thing. Because the cut diagram for PDF is not a genuine amplitude,

but has explicit spinor indices for both sides of the cut line, i.e., ML = 〈X|ψα(0)|P 〉 has a

spinor index α, and MR = 〈P |ψ̄β(0)|X〉 has a spinor index β. So the spinor structure of ML

can be written as

ML ∼ c γµ1 · · · γµnu (79)

Its Hermitian conjugate is

M †
L = 〈P |ψ†α(0)|X〉 ∼ c∗ u†γµn† · · · γµ1† (80)

The MR is actually defined using ψ̄, which adds an additional γ0 to M †
L, giving

MR = M †
Lγ

0 = 〈P |ψ̄α(0)|X〉 ∼ c∗ u†γµn† · · · γµ1†γ0 = c∗ ūγµn · · · γµ1 (81)

giving exactly the structure we need for the reversed process of the left side of the cut line.
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This also leads to a useful property of cut diagram. When we flip the left side ML on the

cut line to the right, we will flip all the momentum flow, and the right part MR obtained in

this way is

MR = M †
Lγ

0 (82)

If we flip MR to the left, we get

ML = γ0M †
R (83)

so if we reverse the whole diagram, we obtain

MRML
flip−−→M †

Lγ
0γ0M †

R = (MRML)† (84)

that is, reversing a cut diagram gives its Hermitian conjugate!

b. Rules for the cut lines. The integration of k in Eq. (53) makes it look like a loop

momentum. This is not exactly true, because even in a diagram without any loop we still

need to integrate over k. When there are loops, k will entangle with the loop momenta and

make it complicated. It is worth making this clear.

According to our definition of the cut line in Eq. (26), physical states X flow across the

cut with physical on-shell momenta, where “physical” means with positive + component.

When X contains N ≥ 1 particles, with momenta q1, · · · , qN , the sum over X contains a

phase space integration

∫ N∏

i=1

dd−1qi

(2π)d−12Eqi
=

∫ N∏

i=1

ddqi
(2π)d

(2π) δ(q2
i −m2

i )θ(q
+
i ) (85)

where we have taken qi to go from the left of the cut to the right. Together with the k

integration and the momentum conservation δ-function, we have

∫
ddk

(2π)d
δ(k+ − xP+)

∫ N∏

i=1

ddqi
(2π)d

(2π) δ(q2
i −m2

i )θ(q
+
i )(2π)dδd(P −

N∑

i=1

qi − k) (86)

Integrating out k using the δ-function results in

∫ N∏

i=1

ddqi
(2π)d

(2π) δ(q2
i −m2

i )θ(q
+
i )δ(P+ −

N∑

i=1

q+
i − xP+) (87)

In this way, we treat each qi as a loop momentum, but for the qi line across the cut we

associate with a factor (2π) δ(q2
i −m2

i )θ(q
+
i ). And overall there is a factor δ(P+−∑N

i=1 q
+
i −

xP+) constraining all the loop momentum qi.
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The sum over X states also contains a sum over the spins for particles with spin higher

than 0. A fermion with qi on the left of the cut corresponds to a final-state particle line

with ū(qi). It has a corresponding u(qi) on the right of the cut. Then the spin sum gives

∑

s

us(qi)ūs(qi) = (qi/+mi) (88)

If the fermion line flows from the right of the right to the left (but the momentum qi still

flows to the right), we have instead,

∑

s

vs(qi)v̄s(qi) = (qi/−mi) = −(−qi/+mi) (89)

where −qi is the momentum flows along the fermion line arrow. So if we want to assign

factor q/ + m to a cut fermion line with momentum q flows along the fermion line, we need

to add an extra −1 when the fermion line goes from the right of the cut to the left. This

means that if a fermion loop is cut, we would have an overall −1 for the loop.

If a gluon line with momentum q is cut, we would have

∑

λ=1,2

ελµ(q)ελ∗ν (q)→ −gµν (90)

where the sum is over physical polarizations and the replacement of the polarization vector

sum by −gµν uses Ward identity. Ward identity still holds in the presence of the Wilson

line.

When X contains N = 0 particle, i.e., |X〉 = |0〉 is the vacuum state, then the diagram

contains only LO or virtual corrections. In this case, the k integration together with the

momentum conservation δ-function becomes
∫

ddk

(2π)d
δ(k+ − xP+)(2π)dδd(P − k) = δ(P+ − xP+) (91)

Including the rule that the diagram on the right of the cut line is Hermitian conjugate of

the one on the left, we have the following Feynman rules for cut diagrams

1. Usual Feynman rules apply to the left and right of the cut lines, but with all i→ −i
on the right parts. When the vertex involves a factor of fabc, we add a −1 factor.

2. Each line across the cut line gives a momentum integration
∫
ddq/(2π)d.

3. There is an overall δ function δ(P+ −∑N
i=1 q

+
i − xP+). When no particle goes across

the cut line (N = 0), it becomes δ(P+ − xP+).
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k

(2π)δ(k2 −m2)θ(k+)

k

−gµνδab

µ, a ν, b

k

(2π)δ(k2 −m2)θ(k+) (γ · k +m)

k

−(2π)δ(k2 −m2)θ(−k+) (γ · k +m)

FIG. 6: Feynman rules for cut propagaotrs. Dashed line is for scalar particle. a, b are color indices

of gluons. Note that the momentum of fermion line flows along the fermion arrow, and there is an

extra −1 factor for the fermion line crossing the cut line to the left.

4. For a cut propagator with momentum k (for fermions, k flows in the fermion line

direction), replace the usual propagator by

i

k2 −m2 + iε
→ (2π)δ(k2 −m2)θ(k+). (92)

For a cut fermion propagator, add a factor k/+m. For a gluon cut propagator, add a

factor −gµνδab, where a, b are the color indices.

5. When there is a fermion line going from the right of the cut to the left, add a factor

−1.

The cut propagators are summarized in Fig. 6. Note that the second and third rules have

already included the integral of k and the δ(k+ − xP+) factor in Eq. (53), so the parton

vertices defined there should not include them.

5. More on cut diagrams.

We have been stressing that the diagram to the right of the cut line is the Hermitian

conjugate of the left part. There may be puzzles, because the amplitude MR on the right

can be also expressed as usual matrix element, like in Eq. (24), and thus it seems to be an

amplitude from |X〉 to |P 〉, with the usual Feynman rules. How should we understand the

rules summarized previously using that MR is the complex ocnjugate of ML?
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This puzzle can be resolved if we are careful about the states. An amplitude is the

matrix elements of an time-ordered operator between an “out” asymptotic state and an

“in” asymptotic state. The DIS amplitude should be written as

Mµ = 〈X; out|Jµ(0)|P ; in〉 (93)

where only write the part attached to the virtual photon. The DIS structure function is

then

W µν =
1

4π

∑

X

(2π)4δ4(q + P − PX)Mµ†(0)Mν(0)

=
1

4π

∑

X

∫
d4xei(q+P−PX)·x 〈P ; in|Jµ†(0)|X; out〉 〈X; out|Jν(0)|P ; in〉

=
1

4π

∑

X

∫
d4xeiq·x〈P ; in|Jµ†(x)|X; out〉 〈X; out|Jν(0)|P ; in〉

=
1

4π

∫
d4xeiq·x〈P ; in|Jµ†(x)

{∑

X

|X; out〉 〈X; out|
}
Jν(0)|P ; in〉

=
1

4π

∫
d4xeiq·x〈P ; in|

{
Jµ†(x)Jν(0)

}
|P ; in〉 (94)

where we used

P̂ µ|p; in/out〉 = pµ|p; in/out〉 (95)

in going from the second line to third line, and

∑

X

|X; out〉 〈X; out| =
∑

X

|X; in〉 〈X; in| = 1. (96)

It is necessary that we are only using “Xout” states because only then do we have the

completeness relation. Therefore the DIS structure function is the matrix element of normal

ordered current-current operator between two “in” hadron states.

This also indicate that when factorizing W µν into PDF, the latter is also a matrix element

of PDF operator between two “in” states

fi/P (x) =

∫ ∞

−∞

dw−

2π
e−ixP

+w−
〈
P ; in

∣∣∣∣ψi(0+, w−,0T )
γ+

2
WF [w−, 0]ψi(0)

∣∣∣∣P ; in

〉
(97a)

fg/P (x) =

∫ ∞

−∞

dw−

2πxP+
e−ixP

+w−
〈
P ; in

∣∣G+j(0+, w−,0T )WA[w−, 0]G+j(0)
∣∣P ; in

〉
(97b)
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When we translate this into cut diagrams, we insert a complete set of states
∑

X |X; out〉 〈X; out|, and Eq. (23) and Eq. (24) become

ML =

0 ∞

· · ·
P PX

= 〈X; out |W n
F [∞, 0]ψi(0)|P ; in〉 (98)

MR =
PX P

· · ·
0∞

=
〈
P ; in

∣∣ψi(0)W n
F [0,∞]

∣∣X; out
〉

= M †
Lγ

0 (99)

Therefore, only ML can be interpreted as a Feynman amplitude, and MR should be in-

terpreted as its Hermitian conjugate, using the Feynman rules discussed in the previous

subsection.

One may start worrying about the use of time-ordered operators as definitions of PDF in

Eq. (39). This is not a problem because for a stable single particle, |P ; in〉 = |P ; out〉 = |P 〉.
So we are free to change the proton states such that

fi/P (x) =

∫ ∞

−∞

dw−

2π
e−ixP

+w−
〈
P ; out

∣∣∣∣T
{
ψi(0

+, w−,0T )
γ+

2
WF [w−, 0]ψi(0)

}∣∣∣∣P ; in

〉

(100a)

fg/P (x) =

∫ ∞

−∞

dw−

2πxP+
e−ixP

+w−
〈
P ; out

∣∣T
{
G+j(0+, w−,0T )WA[w−, 0]G+j(0)

}∣∣P ; in
〉

(100b)

Then they correspond exactly to time-ordered Feynman amplitudes. In contrast, in the

cut-amplitude definition, it is better to use 〈P ; in| · · · |P ; in〉 because the inserted states of

X are both out states.

With this understanding, we can understand better the optical theorem. S matrix ele-

ments are defined as

Sfi = 〈f ; out|i; in〉 (101)

where both “in” states and “out” states are orthoghonal, normalized, and complete: 10

〈f ; out|f ′; out〉 = δff ′ , 〈i; in|i′; in〉 = δii′ ,
∑

f

|f ; out〉〈f ; out| =
∑

i

|i; in〉〈i; in| = 1 (102)

10 Here δff ′ is an abbreviate of the standard normalized δ function between states. For example, for single

particle states, 〈p; out|p′; out〉 = (2π)32Epδ
3(p− p′).
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This makes the matrix Sfi a unitary matrix

∑

i

SfiS
∗
f ′i = δff ′ ,

∑

f

SfiS
∗
fi′ = δii′ (103)

From this we can define a unitary operator Ŝ such that

Sfi = 〈f ; out|i; in〉 = 〈f ; out|Ŝ|i; out〉 = 〈f ; in|Ŝ|i; in〉 (104)

or,

Ŝ|i; out〉 = |i; in〉, 〈f ; in|Ŝ = 〈f ; out| (105)

The Feynman amplitude iMfi is defined through

Ŝ = 1 + iT̂ ,

Sfi = 〈f ; out|Ŝ|i; out〉 = 〈f ; out|1 + iT̂ |i; out〉 = δfi + (2π)4δ4(pf − pi) · iMfi (106)

where the second line can be equally expressed in terms of “in” states. So we have

〈f ; out|1 + iT̂ |i; out〉 = 〈f ; in|1 + iT̂ |i; in〉 = (2π)4δ4(pf − pi) · iMfi (107)

The optical theorem follows from unitarity of Ŝ and a completeness relation (which is

also an aspect of unitarity)

1 = Ŝ†Ŝ = (1− iT †)(1 + iT ) = 1 + i(T − T †) + T †T (108)

so

i(T − T †) = −T †T . (109)

Sandwiching between 〈f ; in| and |i; in〉 gives

〈f ; in| i(T − T †) |i; in〉 = −〈f ; in| T †T |i; in〉 (110)

The left-hand side is

(2π)4δ4(pf − pi)
(
iMfi − iM∗

if

)
(111)

and the right-hand side is, by inserting a complete set,

−
∑

X

〈f ; in| T †|X; in〉〈X; in|T |i; in〉 = −
∑

X

[
(2π)4δ4(pf − pX)M∗

Xf

] [
(2π)4δ4(pi − pX)MXi

]

= −(2π)4δ4(pf − pi)
∑

X

(2π)4δ4(pi − pX)
[
M∗

XfMXi

]

(112)
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Thus, unitarity implies

iMfi − iM∗
if = −

∑

X

(2π)4δ4(pi − pX)M∗
XfMXi (113)

Although it is iMfi that corresponds directly to a diagram, usually we we would factor the

i out and just talk aboutMfi, because the LO diagram is usually pure imaginary (e.g., λφ4

theory). Thus we will talk about the imaginary part of Mfi, instead of the real part of

iMfi, which is more of a convention issue.

Mfi is the amplitude going from initial state i to final state f . M∗
if is the complex con-

jugate of the amplitudeMif =Mi←f . Using the cut-diagram language, taking a conjugate

renders it an amplitude of (i → f), but to the right of the cut line. Similarly, MXi is the

amplitude of (i→ X) to the left the cut butM∗
Xf is the amplitude of (X → f) to the right

the cut. In terms of diagrams, we have 11

i





i

f

− i

f





= − i

f

(115)

When i = f , Eq. (113) becomes

2ImMAA =
∑

X

(2π)4δ4(pA − pX)M∗
XAMXA =

∑

X

(2π)4δ4(pA − pX)|MXA|2 (116)

11 If we do not follow the convention of factoring out the i factor, this can be expressed in a simpler form

i

f

+
i

f

+
i

f

= 0 (114)

which can be interpreted as that all possible cuts of a diagram (including the two cuts of putting the

whole diagram to the left or right of the cut line) sum up to 0.
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which can be expressed as

2 Im A A = A A (117)

where the cut line has the same meaning as (26), and the cut rules are the same as discussed

in the previous subsection, except that there is no complication caused by the integration

of k and the δ(k+ − xP+) function.

IV. CALCULATION OF PERTURBATIVE PDFS IN FEYNMAN GAUGE

In the preceding discussion we have been stressing the gauge invariance of the PDF

definitions, which leads to the discussion of Wilson lines. Nevertheless, when going down to

calculation, we need to specify a gauge to be able to write the gluon propagator. For this,

we choose the covariant Feynman gauge. We can also choose light-cone gauge, where there

is no gauge link at all. We will do that later.

In the perturbative calculation, we take an on-shell parton as the target. Similar to

the case in Eq. (1), we need to calculate the diagonal matrix element, i.e., the initial and

final partons should have the same momentum, spin/polarization, and color. We can either

specify a spin or color state, or average over them. Note that when averaging over on-

shell gluon polarization states, we need to include only physical polarizations, which have

d − 2 = 2 − 2ε in d-dimensions. Throughout the calculations, we take partons as being

massless.

A. LO PDFs

The LO diagrams for quark and gluon PDFs are shown in Fig. 7. Only these two diagrams

can be drawn, so there are only f
[0]
q/q(x) and f

[0]
g/g(x).

f
[0]
q/g(x) = f

[0]
g/q(x) = 0 (118)

Since no momentum flows along the Wilson line, we simply have k = p.
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p p

k k

p, µ, a p, ν, a

k, j k, j

(a) (b)

FIG. 7: LO cut diagrams for quark and gluon PDFs.

For quark PDF, we have

f
[0]
q/q(x) = δ(p+ − xp+)Tr

[
γ+

2

p/

2

]
= δ(1− x) (119)

where δ(p+−xp+) is from the third rule listed on p. 24, γ+/2 is the parton vertex in Eq. (53),

and p//2 is the spin average of the spinors. The initial and final external quarks have the

same color which has been averaged. Note that we can also choose not to average over the

spins, but specify a certain spin s, which gives

f
[0]
q/q(x) = δ(p+ − xp+)

[
ūs(p)

γ+

2
us(p)

]
= δ(p+ − xp+)p+ = δ(1− x) (120)

where we used ūs(p)γ
µus′(p) = 2pµδss′ .

For gluon PDF, we have

f
[0]
g/g(x) =

1

2− 2ε

∑

λ

δ(p+ − xp+)
1

xp+
· (−i)

(
p+gjµ − pjnµ

)
εµλ(p) · i

(
p+gjν − pjnν

)
εν∗λ (p)

(121)

where δ(p+−xp+) is from the third rule listed on p. 24, 1/xp+ is the parton vertex in Eq. (53)

and δjj′ has been implicitly included as a sum over j (transverse index), (−i)
(
p+gjµ − pjnµ

)

and i (p+gjν − pjnν) are the gluon-gauge-link vertices in Fig. 2 where we have used k = p

to substitute p for k. λ denotes the gluon polarization and has been averaged. We choose

p = (p+, 0−,0T ), and physical polarizations to satisfy

ε±λ = 0, ελ · ε∗λ′ = −εjλ · εj∗λ′ = −δλλ′ ,
∑

λ

εµλ(p)εν∗λ (p) = −gµν + nµn̄ν + nνn̄µ ≡ −gµν⊥

(122)

Note that we have three ways to do it:
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1. Direct calculation for certain polarization. Now we delete the 1/(2 − 2ε)
∑

λ and use

a specified polarization state λ. Since n · ε = ε+ = 0, we have

f
[0]
g/g(x) = δ(p+ − xp+)

1

xp+
· p+εjλ(p) · p+εj∗λ (p) = δ(1− x) (123)

2. Polarization average using Eq. (122). Eq. (122) represents the exact results for physical

gluon polarization vectors. Sum over λ gives

f
[0]
g/g(x) =

1

2− 2ε
δ(p+ − xp+)

1

xp+
· (−i)

(
p+gjµ − pjnµ

)
· i
(
p+gjν − pjnν

)
(−gµν⊥ )

=
1

2− 2ε
δ(p+ − xp+)

1

xp+
·
(
p+
)2

(−gjj) = δ(1− x) (124)

where in the second line we used gµν⊥ nµ = gµν⊥ nν = 0 and gjj = −(2− 2ε).

3. Use of Ward identity. It is easy to verify Ward identity by replacing εµλ(p) by pµ,

which gives
(
p+gjµ − pjnµ

)
pµ = p+pj − pjn · p = 0 (125)

This allows us to replace the polarization sum by

∑

λ

εµλ(p)εν∗λ (p)→ −gµν (126)

And then

f
[0]
g/g(x) =

1

2− 2ε
δ(p+ − xp+)

1

xp+
·
(
p+gjµ − pjnµ

)
·
(
p+gjν − pjnν

)
(−gµν) = δ(1− x)

(127)

Note that although using −gµν makes it seem that we are using d polarization, we

should still divide by 2− 2ε, the number of physical polarizations.

The above results can be summarized as

f
[0]
j/k(x) = δjkδ(1− x) (128)

The LO calculations are simple, and we have illustrated different treatments of target spin

states and verified that they are equivalent. For the NLO calculations, we will exclusively

average over the spins (and colors) of the target.
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p

k

k − p

FIG. 8: NLO cut diagrams for quark PDF in a gluon target.

nµ nµ nµ

(a) (b) (c)

FIG. 9: The other three NLO cut diagrams for quark PDF in a gluon target where g legs attach

to the Wilson line. These diagrams vanish because n · ε = 0.

B. NLO: Quark in gluon

There is only one diagram shown in Fig. 8 and 9. The diagrams in Fig. 9 all contain

gluon legs attached to the Wilson line, which gives n · ε = ε+ = 0 due to our choice in

Eq. (122). Thus the only contribution comes from Fig. 8, where we have used the fact that

no momentum flows along the Wilson line to write the momentum of the quark propagator

as k.
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Using the Feynman rules summarized before, we have

f
[1]
(0)q/g(x) = −

∫
ddk

(2π)d
δ(k+ − xp+)Tr

[
γ+

2

ik/

k2 + iε

(
−igµεε/(p)T aij

)
×

×(k/− p/) (2π)δ
(
(k − p)2

)
θ(p+ − k+)

(
igµεε/∗(p)T aji

) −ik/
k2 − iε

]

= −g2µ2εTF θ(1− x)

∫
dk−d2−2εkT

(2π)d
(2π)δ

(
(k − p)2

) Tr
[
γ+

2
k/ ε/(p) (k/− p/) ε/∗(p) k/

]

(k2 + iε)(k2 − iε)
(129)

where i, j are the colors of the fermions and are summed over, but the gluon color a is

not, which gives TF . The subscript (0) means that this is bare PDF, which contains UV

divergence and is subject to renormalization. In the first line, we equivalently write the

integration of q in rule 2 on p. 24 as the integration over k, and the overall minus sign is

because the cut fermion propagator flows to the left of the cut line. In the second line we

have used the δ(k+−xp+) function to integrate out k+. δ ((k − p)2) is the on-shell condition

for the antiquark (the cut propagator). We can use it to integrate out k−.

(k − p)2 = 2(k − p)+(k − p)− − k2
T = 2(x− 1)p+k− − k2

T = −2(1− x)p+

(
k− +

k2
T

2(1− x)p+

)

δ
(
(k − p)2

)
=

1

2(1− x)p+
δ

(
k− +

k2
T

2(1− x)p+

)
(130)

This fixes k− = −k2
T/2(1− x)p+ < 0, and thus we have

k =

(
xp+, − k2

T

2(1− x)p+
, kT

)
(131)

(p− k) =

(
(1− x)p+,

k2
T

2(1− x)p+
, −kT

)
(132)

as the momentum for the quark and antiquark split by the gluon with on-shell momentum

p = (p+, 0−,0T ). This is an important feature of parton density — the parton we are seeking

is off-shell, and the target/mother parton and the other daughter parton are on shell, and

the phase space of the other daughter parton is integrated over. The off-shellness of the

parton is characterized by kT :

k2 = 2xp+ ·
(
− k2

T

2(1− x)p+

)
− k2

T = − k2
T

1− x (133)

which is space-like. The smaller kT is, the closer the parton is to be on-shell and the more

collinear the two partons are. For small kT , we can connect it the angle θ at which the
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parton is split out

θ ' kT
kz
'
√

2kT
xp+

(134)

This can be connected to the parton shower picture in the initial state radiation where a

parton comes out of the proton in a collision and keeps radiating (away on-shell partons)

and develops a high kT (virtuality). This picture is in contrast to the jet picture, or the final

state radiation, where an off-shell parton goes out from the hard collision and keeps radiating

(away on-shell partons) until its kT (virtuality) becomes very small and hadronizes. There

the NLO parton picture would be an off-shell parton splitting into two on-shell partons.

Using the δ function to integrate out k−, we now calculate the trace in Eq. (129). First

we average the polarization of the gluon, which gives

Tr

[
γ+

2
k/ ε/(p) (k/− p/) ε/∗(p) k/

]
average−−−−→
polari.

−1

2− 2ε
Tr

[
γ+

2
k/ γµ (k/− p/) γν k/

]
(gµν − nµn̄ν − nνn̄µ)

(135)

gµν term gives

gµνTr

[
γ+

2
k/ γµ (k/− p/) γν k/

]
=

2− d
2

Tr
[
γ+ k/ (k/− p/) k/

]

=− 4(1− ε)
[
2k+ k · (k − p)− (k − p)+ k2

]
=

4(1− ε)
1− x p+ k2

T (136)

nµn̄ν term gives

nµn̄νTr

[
γ+

2
k/ γµ (k/− p/) γν k/

]

=
1

2
Tr
[
γ+ k/ γ+ (k/− p/) γ− k/

]
= k+Tr

[
γ+ (k/− p/) γ− k/

]

=4k+
[
(k − p)+k− − k · (k − p) + k+(k − p)−

]
= 4xp+k2

T (137)

and nνn̄µ term gives

nνn̄µTr

[
γ+

2
k/ γµ (k/− p/) γν k/

]

=
1

2
Tr
[
γ+ k/ γ− (k/− p/) γ+ k/

]
= k+Tr

[
γ+ k/ γ− (k/− p/)

]

=4k+
[
k+(k − p)− − k · (k − p) + (k − p)+k−

]
= 4xp+k2

T (138)

where for nµn̄ν and nνn̄µ terms we have used γ+γ+ = γ−γ− = 0 and g+− = g−+ = 1. Then
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the trace in Eq. (135) becomes

Tr

[
γ+

2
k/ ε/(p) (k/− p/) ε/∗(p) k/

]
average−−−−→
polari.

−1

2− 2ε

[
4(1− ε)

1− x p+ k2
T − 8xp+k2

T

]

=− 2p+k2
T

1− x

[
1− 2x(1− x)

1− ε

]
(139)

Note that since nµn̄ν and nνn̄µ terms are non-zero, we cannot replace the polarization sum

by −gµν , as we usually do in calculating Feynman diagrams. This is because we already used

the transverse polarization condition to render the diagrams in Fig. 9 to zero, and therefore

we have to use exact transverse polarization sum in calculating the diagram in Fig. 8. In

other words, the diagram in Fig. 8 alone does not satisfy Ward identity. One has to include

all those four diagrams to guarantee Ward identity. Only in that case can we safely do
∑

λ ε
µ
λ(p)εν∗λ (p)→ −gµν .

Plugging Eq. (130), (133) and (139) into Eq. (129) gives

f
[1]
(0)q/g(x) = g2µ2εTF θ(1− x)

∫
d2−2εkT
(2π)d−1

1

k2
T

[
1− 2x(1− x)

1− ε

]
(140)

Since the integrand is spherically symmetric with kT , we can use [1]

∫
ddkf(k2) =

πd/2

Γ(d/2)

∫ ∞

0

dk2 (k2)d/2−1 f(k2) (141)

to write ∫
d2−2εkT
(2π)d−2

=
(4π)ε

(4π)Γ(1− ε)

∫ ∞

0

dk2
T (k2

T )−ε (142)

And then

f
[1]
(0)q/g(x) =

g2

8π2

(4πµ2)ε

Γ(1− ε)TF
∫ ∞

0

dk2
T

k2
T

(k2
T )−ε

[
1− 2x(1− x)

1− ε

]
(143)

(where we have omitted θ(1− x) factor, as will be explained later.) We see that as ε → 0,

we have both UV divergence and collinear divergences. The UV divergence comes because

the integration domain of kT extends to infinity. That does not reflect the true physical

reality and is a consequence of factorization approximation, which disentangles kT integra-

tion from the hard process. If we do not perform factorization, then the hadron part (that

becomes PDF after factorization) forms a closed loop with the hard part, and there is no UV

divergence from k integral. Therefore, the renormalization of PDF is separate from QCD

renormalization and should be regarded as an artifact. After removing UV divergence, we

are left with collinear divergence. Collinear divergence arises from the configuration where
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the quark is collinear to the gluon (and the antiquark) (see Eq. (134)12), and is a result

of on-shell and massless parton approximation. In reality, we do not have on-shell par-

tons and quarks are not massless. So collinear divergence does not really exist in nature,

but only reflects its nature of being long-distance origin. When calculating hard scattering

coefficients, we need to systematically subtract these long-distance (collinear divergent in

massless calculation) parts.

Dimensional regularization (DR) regulates both UV (by ε > 0) and IR (by ε < 0)

divergences. A scaleless integral, like the kT integral in Eq. (143), in DR gives 0. This is one

way of saying that IR divergence cancels UV divergence, but this is very misleading because

UV divergence is always canceled by UV counterterms, and the IR divergence is left. The

result is that the renormalized f
[1]
q/g(x) is equal to the negative of the UV pole. To extract

the UV pole, we cutoff the lower limit of the kT integration

∫ ∞

Λ2

dk2
T

k2
T

(k2
T )−ε =

1

ε
(Λ2)−ε (144)

where we have to use ε > 0. The UV pole is then 1/ε. In MS scheme, we would write as

1/ε− γE + ln 4π, or Sε/ε Eq. (41). So we have

UV pole of

∫ ∞

0

dk2
T

k2
T

(k2
T )−ε =

Sε
ε

(145)

And therefore,

UV pole of f
[1]
(0)q/g(x) =

g2

8π2
TF
[
x2 + (1− x)2

] Sε
ε

(146)

From Eq. (46), the (UV) renormalized quark PDF in gluon target is

f
[1]
q/g(x) = f

[1]
(0)q/g(x) + Z [1]

qg (x). (147)

In MS scheme, Zqg(x) only removes the UV pole in f
[1]
(0)q/g(x), so

Z [1]
qg (x) = − g2

8π2
TF
[
x2 + (1− x)2

] Sε
ε

(148)

and then

f
[1]
q/g(x) = 0 + Z [1]

qg (x) = − g2

8π2
TF
[
x2 + (1− x)2

] Sε
ε

(149)

12 In 4-dimensions, the kT integral can be written in terms of θ as
∫
dk2T /k

2
T = 2

∫
dθ/θ, from which we can

clearly see the logarithmic collinear divergence.
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which is purely the IR pole. As we have explained, being IR divergent is not a big problem

since f
[1]
q/g(x) is not a real object in nature. It is more of a theory method to subtract long-

distance piece from the hard coefficients, and moreover it gives the evolution kernel for RGE

of the renormalized PDF. From Eq. (52) we have

P [1]
qg (z) =

g2

8π2
TF
[
z2 + (1− z)2

]
(150)

Now let’s explain the θ(1−x) factor omitted in Eq. (143). In fact, our results in Eq. (149)

and (150) are only true when x > 0 (which is enough for our purpose). The x < 0 part can

be always obtained using Eq. (38) where P can be any target, and in particular, the on-shell

gluon target here, so we have when x < 0,

f
[1]
q/g(x) = −f [1]

q̄/g(−x) =
g2

8π2
TF θ(1 + x)

[
x2 + (1 + x)2

] Sε
ε
. (151)

where we have used the charge symmetry to write down the antiquark PDF in a gluon when

x > 0

f
[1]
q̄/g(x) = f

[1]
q/g(x) = − g2

8π2
TF θ(1− x)

[
x2 + (1− x)2

] Sε
ε

(152)

We see that when x < 0, the θ(1 + x) factor sets a lower bound −1 to x. Note that it is

because gluon is charge neutral that have f
[1]
q̄/g(x) = f

[1]
q/g(x), but f

[1]
q/g(x) = −f [1]

q̄/g(−x) is true

for any target, not necessarily neutral. Then we have the complete quark PDF in a gluon

f
[1]
q/g(x) =





− g2

8π2
TF
[
x2 + (1− x)2

] Sε
ε

when0 < x < 1

+
g2

8π2
TF
[
x2 + (1 + x)2

] Sε
ε

when − 1 < x < 0

0 otherwise

(153)

which is an odd function of x. This can also be calculated using the same approach, but

for x < 0 there are more cut diagrams and the calculation is more involved. Since it does

not turn out to be very useful, I will not discuss it unless I have time to complete this part

later. And the antiquark PDF can be also provided.

C. NLO: Quark in quark

The diagrams for quark PDF in a (on-shell massless) quark target are shown in Fig. 10-12,

where (a)(b)(g) should be accompanied by their Hermitian conjugate, obtained by flipping

left and right. (d) and (f) are each other’s Hermitian conjugate.
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p

l

p− l

k k
l − p

p− k
p

k

k k

p− k

p

k

k k

(a) (b) (c)

FIG. 10: Three of the NLO cut diagrams for quark PDF in a quark target. Note that no momentum

flows through the Wilson line across the cut line. This allows to label the momentum on the Wilson

line in (a) and (b). The Hermitian conjugate of diagrams (a) and (b) should also be included.

p

k k

p

k k

p

k k

(d) (e) (f)

FIG. 11: Three of NLO cut diagrams for quark PDF in a quark target. These diagrams vanish

because nµ g
µνnν = n2 = 0.

A gluon attached to the Wilson line has a vertex proportional to nµ. A gluon propagator

contains a gµν factor. If the both ends of a gluon propagator attach to the Wilson line, the

diagram is proportional to nµ g
µνnν = n2 = 0. So diagrams (d)(e)(f) in Fig. 11 vanish.

1. Virtual gluon radiation (a)

Diagram (a) in Fig. 10 represents a virtual gluon radiation. In the DIS factorization

context, it comes from the virtual collinear gluon radiation of the quark parton, and is

factorized into the Wilson line. So this part is supposed to only capture the collinear

configuration. But after factorized into the PDF, the loop momentum l extends to infinity,
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p

k k

+c.t.

(g)

FIG. 12: NLO external leg corrections for quark PDF in a quark target, accompanied by the QCD

counterterm due to the field renormalization factor Z2. The Hermitian conjugated diagram should

also be included. Since their UV divergences have already been subtracted by Z2, they do not

contribute new UV divergences to the bare PDF.

and then the Wilson line propagator leads to a new divergence called rapidity divergence.

This is not inherent in the DIS process, and we will see a cancelation of rapidity divergence

between the virtual emission (a) and the real emission (b).

Following the Feynman rules outlined in Sec. III, diagram (a) together with its Hermitian

conjugate gives

f
(a+a†)
(0) q/q = δ(p+ − xp+)

∫
ddl

(2π)d
×

× Tr

[
γ+

2

(
−igµεnµT aij

) i

n · (l − p) + iε

il/

l2 + iε

(
−igµεγνT aji

) −igµν
(p− l)2 + iε

p/

2

]
+ h.c.

= −ig2µ2εCF δ(p
+ − xp+)

∫
ddl

(2π)d

Tr
[
γ+

2
l/γ+ p/

2

]

(l+ − p+ + iε) (l2 + iε) ((p− l)2 + iε)
+ h.c.

(154)

where δ(p+ − xp+) is from rule 3 on p. 24 since no momentum flows to the final states,
(
−igµεnµT aij

)
is the Wilson line vertex for the attached gluon and T aij is the fundamental

representation generator with a being the gluon color index and i, j the quark color indices,

and i/ (n · (l − p)) is the gauge link propagator whose momentum is obtained from the

momentum conservation of the link vertex. There is a sum over a and j, but not i, which

gives the CF factor.

l is a genuine loop momentum, each component extending to infinity. The gauge link

propagator only contains l+ component. This suggests to express the integration in light-
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l−

l2T
2 l+

− l2T
2 (p+−l+)

FIG. 13: The pole structure of l− for the loop momentum l in the virtual correction of quark PDF

in quark target (diagram (a) in Fig. 10), when 0 < l+ < p+.

cone coordinate

∫
ddl =

∫
dl+dl−d2−2εlT (155)

l2 + iε = 2l+l− − l2T + iε (156)

(p− l)2 + iε = −2 (p+ − l+) l− − l2T + iε (157)

For the integral of l−, there are two poles, one from the quark propagator l2, the other from

the gluon propagator (p− l)2. For the integral to be non-zero, it is necessary that these two

poles lie on different sides of the real axis on the complex l− plane. This constrains l+ to be

between 0 and p+:

Only when 0 < l+ < p+ is the l− integral non-zero. (158)

Then l2 gives a l− pole at
l2T

2l+
− iε and (p− l)2 at − l2T

2(p+ − l+)
+ iε, shown in Fig. 13. The

distance between them is
l2T
2

(
1

l+
+

1

p+ − l+
)

(159)

When lT → 0, they become infinitely closer so that the l− contour is pinched by these

two poles, which means that there is no way to deform the contour to avoid them and the

integration must encompass the region where the integrand is very large (infinite as lT → 0).

A non-zero lT regulates the pinch singularity. So the integral of l− is a singular function

of lT when lT → 0. We perform the l− integration by deform the contour to encircle the

pole of (p − l)2 on the upper half of the complex plane, which picks the residue of l− at
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−l2T/2(p+ − l+) + iε. Equivalently this is done by replacing the propagator of the gluon by

i

(p− l)2 + iε
→ 2πi · i

−2(p+ − l+)
δ

(
l− +

l2T
2(p+ − l+)

)
= 2πδ

(
(p− l)2

)
(160)

just like cutting the gluon propagator. Picking this pole then gives

l2 = 2l+
(
− l2T

2(p+ − l+)

)
− l2T = − p+

p+ − l+ l
2
T (161)

Tr

[
γ+

2
l/γ+p/

2

]
= 2l+p+ (162)

and the integral in Eq. (154) becomes

∫
dl+d2−2εlT

(2π)d
2l+p+

(l+ − p+)
(
− p+

p+−l+ l
2
T

) 2πi

−2(p+ − l+)

=− i
∫ p+

0

l+dl+

p+ − l+
∫

d2−2εlT
(2π)d−1

1

l2T

=− ip+ (4π)ε

(8π2)Γ(1− ε)

∫ 1

0

α dα

1− α

∫
dl2T
l2T

(
l2T
)−2ε

(163)

where on the third line we have defined α = l+/p+. Notice that the integral of l− gives a

1/l2T singularity, arising from the on-shellness of l2 when l2T = 0. This gives a logarithmically

singular integral dl2T/l
2
T . This happens when lT = 0 and both l (the quark momentum) and

(p− l) (the gluon momentum) are on-shell and have positive + components, and therefore

is of collinear origin. So the collinear divergence is a pinch singularity. Note that collinear

divergence only requires two lines (the quark and the gluon propagators) to be collinear and

on-shell, in contrast to the soft divergence where a soft gluon connects two on-shell quark

lines so three lines are on-shell.

X

In the full DIS diagram (before factorization), the Wilson line here is replaced by a quark

line with momentum l + q, whose virtuality is

(l + q)2 = 2(l+ + q+)(l− + q−)− l2T + (iε) = −2(1− α)p+(l− + q−)− l2T + ε (164)

where we add the iε in its propagator to indicate the pole position. It gives the l− pole on

the same side as (p − l)2, so still only 0 < α < 1 gives non-zero l− integration. Due to the
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existence of the hard scale q− ∼ Q, the pole is to the left of the (p− l)2 pole by distance q−,

so only l2 and (p− l)2 can be pinched for the l− integral. In the Breit frame,

p = (p+, 0, 0T ), p′ = p+ q = (0, p+, 0T ), q = (−p+, p+, 0T ), Q2 = −q2 = 2(p+)2.

So, when picking the l2 pole, we have

(l + q)2 = −2(1− α)p+

(
l2T

2αp+
+ p+

)
− l2T = −(1− α)Q2 − 1

α
l2T (165)

After performing the integration of l− by picking the l2 pole, we have an integral of α from

0 to 1. We notice that l2T cuts off the singularity when α→ 1. If we neglect l2T , we would a

divergent result from
∫ 1

0
dα/(1− α).

When keeping the l2T , the divergence at α → 1 turns to be a ln(l2T/Q
2). Together with

the
∫
dl2T/l

2
T from the pinched integration of l−, we would get a double log of Q2. If we use

a lower cutoff Λ2 for lT , the leading singular structure is like ln2(Q2/m2). This is singular

at m→ 0, i.e., lT → 0. Note that one of the logs comes from the lT → 0 for a fixed α 6= 1,

which is collinear singularity; the other comes from α integration when α→ 1 while taking

lT → 0, or (p− l)→ 0, i.e., the gluon is soft. So the double-log singularity comes from the

region where the gluon is both soft and collinear.

X

However, when getting to the l integration in the PDF, we found an unregulated divergent

integral of α as α→ 1. This is due to the Wilson line propagator 1/(l+−p+). It arises from

the eikonal approximation that we only keep l+ in the other quark propagator in the hard

process, which allows to detach the gluon from the hard part onto the gauge link. That is,

we have thrown away the l2T in Eq. (165) in the first place. However, after doing this the

l+ integration extends to infinity, and especially including the region where lT cannot be

ignored, which makes l+ → p+ an unregulated singularity. At the l− pole that we deform

the contour to encircle, we have, for the quark and gluon momenta

q : l =

(
αp+, − l2T

2(1− α)p+
, lT

)
(166)

g : (p− l) =

(
(1− α)p+,

l2T
2(1− α)p+

, lT

)
(167)

For fixed lT , as α → 1, the + component of the gluon momentum goes to 0+, but its −
component goes to +∞, so it becomes very collinear to the Wilson line along n direction,
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having rapidity y = 2−1 ln[(p − l)+/(p − l)−] → −∞. So we call this divergence rapidity

divergence. The quark becomes far off-shell here. There will also be rapidity divergence

from the real gluon emission diagram (b) in Fig. 10, and they will cancel exactly.

Combining Eq. (154) and (163) gives

f
(a+a†)
(0) q/q (x) = −δ(1− x)

g2CF
4π2

(4πµ2)ε

Γ(1− ε)

∫ 1

0

α dα

1− α

∫ ∞

0

dl2T
l2T

(
l2T
)−2ε

(168)

where “h.c.” became a factor 2 because the result of each diagram is real.

2. Real gluon radiation, part one: (b)

Diagram (b) in Fig. 10 represents a real gluon radiation. In the DIS factorization context,

it comes from the interference between the real gluon emissions of the initial state quark

and the final state quark and momentum region where the gluon is collinear to the initial

state quark. In this case, the gluon is factorized into the Wilson line, as captured by this

diagram. Following the Feynman rules, we have 13

f
(b+b†)
(0) q/q (x) =

∫
ddk

(2π)d
δ(k+ − xp+) (−gµν) (2π)δ

(
(p− k)2

)
θ(p+ − k+)×

× Tr

[
γ+

2

ik/

k2 + iε

(
−igµεγνT aji

) p/
2

−i
n · (p− k)− iε

(
igµεnµT

a
ij

)]
+ h.c.

= −g2µ2εCF

∫
dk−d2−2εkT

(2π)d
(2π)δ

(
(p− k)2

) Tr
[
γ+

2
k/γ+ p/

2

]

(p+ − k+) (k2 + iε)
+ h.c. (169)

Using Eq. (160) allows to directly compare to Eq. (154)

f
(a+a†)
(0) q/q (x) = g2µ2εCF δ(p

+ − xp+)

∫
ddl

(2π)d
(2π)δ

(
(p− l)2

) Tr
[
γ+

2
l/γ+ p/

2

]

(p+ − l+) (l2 + iε)
+ h.c. (170)

We see that the integrations of k−,kT and l−, lT are the same. The only differences are

• k+ is replaced by l+ and is integrated, while both k+ and l+ are confined in (0, 1).

• There is a sign difference, because the momenta of the gauge links in (a) and (b) are

opposite.

13 From now on, we will omit the θ(1 − x) function, keeping in mind that our calculation is valid only for

x > 0 and the PDFs only have support at x < 1. This is enough for our purpose. One can get the PDFs

at x < 0 using Eq. (38).
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If there is no δ(k+ − xp+) function, both results would be exactly the same, except for a

−δ(p+−xp+) factor. δ(k+−xp+) picks the value of the k+ integrand at k+ = xp+. Since the

ultimate result of Eq. (170) is an integration form of α (l+), by picking its value at l+ = xp+

and removing the −δ(p+ − xp+) factor in Eq. (168), we can directly write down the result

for Eq. (169):

f
(b+b†)
(0) q/q (x) =

g2CF
4π2

(4πµ2)ε

Γ(1− ε)
x

1− x

∫ ∞

0

dk2
T

k2
T

(
k2
T

)−2ε
(171)

This has the same rapidity divergence as x → 1, but here x is not integrated. This will

cancel the rapidity in f
(a+a†)
(0) q/q (x), due to the oppsite signs. If we integrate over x from 0 to

1, these two diagrams would cancel exactly.

That the rapidity divergence must cancel between the virtual and read diagrams is be-

cause rapidity divergence is of infrared origin. When α or x go close to 1, the + momentum

of the gluon line goes to 0, so does the gauge link propgator. This can be shown more clearly

in light-cone gauge where there is no gauge link and the gauge link propagator turns into

the special propagator 1/(n ·k) in the gluon propagator. So rapidity divergence occurs when

this propagator goes soft. Since we do not observe those soft particles, they cancel between

real and virtual diagrams, as a result of unitarity. This is also reflected in the fact that the

two Wilson lines on the left and right of the cut line can be connected together into one link.

If we observe the kT the final states, the two Wilson lines can not be connected, and the

soft singularities will not be canceled. In that case, they will become a Sudakov soft factor.

There is also collinear singularity at the limit when kT → 0. For the virtual diagram (a),

we have demonstrated that the collinear divergence comes from the region where the quark

and gluon lines are pinched as lT → 0, forcing the l− contour to be close to the poles and

leading to 1/l2T singularity. Here the gluon is a real particle in the final state, and l− is fixed

by the on-shell condition, for given kT and k+. We shall not talk about whether the contour

can be deformed. But we do see that as kT is small, the k− value selected by the on-shell

condition (the δ ((p− k)2) function) forces the virtuality of the quark line to be small:

k2 = 2k+

( −k2
T

2(p+ − k+)

)
− k2

T = − p+

p+ − k+
k2
T = − 1

1− xk
2
T → 0 (172)

So as kT → 0, the (virtual) quark line also becomes on-shell. We also call such configuration

a pinch by extending the concept. A pinch corresponds to a region where one or more

propagators are forced to be close to mass shell. In this case, their propagators blow up and

give a large and possibly divergent contribution to the integral.

45



Finally, both (a) and (b) contain UV divergences as lT or kT →∞. As explained before,

this is an artifact due to factorization where we disentangle lT or kT from the hard process

and extend their integration range to infinity. The UV divergence will be removed by the

counterterms.

3. Cancelation of rapidity divergence: the plus distribution

When we sum over diagram (a) and (b), we get

f
(a+b)
(0) q/q(x) =

g2CF
4π2

(4πµ2)ε

Γ(1− ε)

(
x

1− x − δ(1− x)

∫ 1

0

α dα

1− α

)∫ ∞

0

dl2T
l2T

(
l2T
)−2ε

≡ g2CF
4π2

(4πµ2)ε

Γ(1− ε)

(
x

1− x

)

+

∫ ∞

0

dl2T
l2T

(
l2T
)−2ε

(173)

where we formally defined a “plus” function of x. Generally, if a function P (x) has singularity

of x at x = 1 and (1− x)P (x) is not singular, then we can define

[P (x)]+ ≡ P (x)− δ(1− x)

∫ 1

0

dαP (α) (174)

The δ(1−x) formally takes away the singularity of P (x) at x = 1. More strictly, this should

be understood as an integration kernel, in the same sense of δ function. [P (x)]+ is defined

such that




[P (x)]+ = P (x) when 0 < x < 1
∫ 1

0

dx [P (x)]+ f(x) ≡
∫ 1

0

dxP (x)(f(x)− f(1))
(175)

where f(x) is a regular function. We can use either Eq. (175) or Eq. (174) to perform

algebraic calculations of the + distributions. For example, the plus distribution in Eq. (180)

is

(
x

1− x

)

+

=
x

1− x − δ(1− x)

∫ 1

0

dz
z

1− z

= −1 +
1

1− x − δ(1− x)

∫ 1

0

dz

(
−1 +

1

1− z

)

=
1

(1− x)+

− 1 + δ(1− x) (176)
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while a function times a plus distribution is easier to use Eq. (175) to transform, e.g.,

x/(1− x)+ can be transformed using

∫ 1

0

dx
x

(1− x)+

f(x) =

∫ 1

0

dx
xf(x)− f(1)

(1− x)+

=

∫ 1

0

dx
(xf(x)− xf(1)) + (x− 1)f(1)

1− x

=

∫ 1

0

dx
x (f(x)− f(1))

1− x − f(1) =

∫ 1

0

dx

[(
x

1− x

)

+

− δ(1− x)

]
f(x)

(177)

to
x

(1− x)+

=

(
x

1− x

)

+

− δ(1− x) (178)

So we have

(
x

1− x

)

+

=
x

(1− x)+

+ δ(1− x) =
1

(1− x)+

− 1 + δ(1− x) (179)

Therefore,

f
(a+b)
(0) q/q(x) ≡ g2CF

4π2

(4πµ2)ε

Γ(1− ε)

[
1

(1− x)+

− 1 + δ(1− x)

] ∫ ∞

0

dk2
T

k2
T

(
k2
T

)−2ε
(180)

This is well defined (free of singularity for x) in the sense of integration, which is all about

the perturbative PDF. We will use it to derive the splitting kernel and calculate the hard

coefficients, both of which only have physical meanings as integration kernels.

4. Real gluon radiation, part two: (c)

Diagram (c) in Fig. 10 represents the other real gluon radiation. In the DIS factorization

context, it comes from a real collinear gluon emission of the initial state quark. In this case,

the gluon is factorized into the Wilson line, as captured by this diagram. Following the

Feynman rules, we have

f
(c)
(0) q/q(x) =

∫
ddk

(2π)d
δ(k+ − xp+) (−gµν) (2π)δ

(
(p− k)2

)
θ(p+ − k+)×

× Tr

[
γ+

2

ik/

k2 + iε

(
−igµεγµT aji

) p/
2

(
igµεγνT

a
ij

) −ik/
k2 − iε

]

= −g2µ2εCF

∫
dk−d2−2εkT

(2π)d
(2π)δ

(
(p− k)2

) Tr
[
γ+

2
k/γµ p/

2
γµk/
]

(k2 + iε) (k2 − iε) (181)
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There is no new feature in this diagram. And we proceed by integrating out the k− using

the δ function

δ
(
(k − p)2

)
=

1

2(1− x)p+
δ

(
k− +

k2
T

2(1− x)p+

)
(182)

which then gives

k2 = 2(xp+)

(
− k2

T

2(1− x)p+

)
− k2

T = − k2
T

1− x (183)

Tr[· · · ] = (2− d)Tr

[
γ+

2
k/
p/

2
k/

]
= (2− d)

[
2k+k · p− p+k2

]
= −2(1− ε)p+k2

T (184)

So we have

f
(c)
(0) q/q(x) = −g2µ2εCF

∫
d2−2εkT
(2π)d−1

1

2(1− x)p+

(
−1− x

k2
T

)2 (
−2(1− ε)p+k2

T

)

= g2µ2εCF (1− ε)(1− x)

∫
d2−2εkT
(2π)d−1

1

k2
T

=
g2CF
8π2

(4πµ2)ε

Γ(1− ε)(1− ε)(1− x)

∫
dk2

T

k2
T

(k2
T )−2ε (185)

Still, we have collinear and UV divergences. The collinear divergence comes from pinched

quark propagator as kT → 0, just as in diagram (b). Note that there are two quark propa-

gators going on-shell in this case, but the numerator contains a factor of k2
T , so the collinear

divergence is still logarithmic.

5. UV subtraction and splitting kernel: combining (a)(b)(c)

There is one more diagram (g) which concerns the external leg corrections. It also con-

tains UV and collinear divergences. But the UV divergences are subtracted by the QCD

counterterms from Z2, the wavefunction renormalization coefficient of quark field. So the

diagram (g) together with its counterterm does not give new UV divergence, and thus does

not affect the PDF renormalization. We will deal with it in the next subsection.

By combining diagram (a)(b)(c), we have, for the bare PDF

f
(a+b+c)
(0) q/q (x) =

g2CF
8π2

(4πµ2)ε

Γ(1− ε)

[
2

(1− x)+

− 2 + 2δ(1− x) + (1− ε)(1− x)

] ∫ ∞

0

dk2
T

k2
T

(
k2
T

)−2ε

(186)

which is 0 in DR. The counterterm (ZqqZ2)[1](x) in Eq. (46) subtracts the UV divergence,
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so

(ZqqZ2)[1](z) =
g2CF
8π2

[
2

(1− z)+

− 2 + 2δ(1− z) + 1− z
](
−Sε
ε

)

=

(
−Sε
ε

)
g2CF
8π2

[
2

(1− z)+

− 1− z + 2δ(1− z)

]
(187)

which gives the UV renormalized PDF

f
(a+b+c)
q/q (x) =

(
−Sε
ε

)
g2CF
8π2

[
2

(1− x)+

− 1− x+ 2δ(1− x)

]
(188)

where we have removed the subscript ‘(0)’ to indicate that this is the renormalized PDF.

The 1/ε pole represents the collinear divergence.

To obtain Z
[1]
qq (z), we also need Z

[1]
2 in Feynman gauge, which is calculated in the appendix

and is

Z
[1]
2 = −

(
Sε
ε

)
g2CF
16π2

, (189)

So

Z [1]
qq (z) = (ZqqZ2)[1](z)− δ(1− z)Z

[1]
2

=

(
−Sε
ε

)
g2CF
8π2

[
2

(1− z)+

− 1− z +
3

2
δ(1− z)

]
(190)

and the splitting kernel

P [1]
qq (z) =

g2CF
8π2

[
2

(1− z)+

− 1− z +
3

2
δ(1− z)

]
(191)

Note that the PDF in Eq. (188) is not the ultimate form, for which we still need the

contribution from diagram (g), which we now turn to.

6. External leg correction (g)

For the external (on-shell) leg corrections in (g) and its Hermitian conjugate, issues may

arise for the on-shell propagators following the loop. The correct treatment is given by LSZ

reduction formula, which tells us that the full effects of external on-shell leg corrections are
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a factor of the residue of the full propagator at its pole. A full quark propagator is given by

iΠ2(p/) =
i

p/−m+ iε
+

i

p/−m+ iε
iΣ2(p/)

i

p/−m+ iε
+ · · ·

=
i

p/−m+ iε

[
1− Σ2(p/)

1

p/−m+ iε
+

(
−Σ2(p/)

1

p/−m+ iε

)2

+ · · ·
]

=
i

p/−m+ iε

1

1 + Σ2(p/) 1
p/−m+iε

=
i

p/−m+ Σ2(p/) + iε
(192)

where m is the renormalized mass (e.g., MS mass), not necessarily the physical pole mass

mP . The residue of Π2(p/) at its pole (the pole mass mP ) is given by

residue [Π2(p/)] = lim
p/→mP

(p/−mP )
1

p/−m+ Σ2(p/) + iε
=

1

1 + Σ′2(p/ = mP )

= 1− Σ′2(p/ = mP ) + · · · (193)

where we only kept the terms relevant for the one-loop calculation. Taking a square root

gives

√
residue [Π2(p/)] = 1− 1

2
Σ′2(p/ = mP ) + · · · (194)

At one-loop order, we only keep the first two terms and Σ2 only contains the one-loop

diagram and the leading-order counterterm, i.e.,

Σ(p/) = Σ(0)(p/) + Z
[1]
2 p/ (195)

And then the square root of the residue

√
residue [Π2(p/)] = 1− 1

2

(
dΣ(0)(p/)

dp/

∣∣∣∣
p/=mP

+ Z
[1]
2

)
(196)

This is the factor to be multiplied to the external leg without any loop corrections (ampu-

tated leg). At 1-loop order, the effect is just to multiply the factor

− 1

2

(
dΣ(0)(p/)

dp/

∣∣∣∣
p/=mP

+ Z
[1]
2

)
(197)

to the leg in the tree graph.

The Σ(0)(p/) and Z
[1]
2 in the massless case and MS scheme are provided in Appendix A 1 a,

cf. Eq. (A2) and (A5). We can see that after taking a derivative of Σ(0)(p/) with respect
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to p/ and then taking p/ to the pole mass, which is 0 in massless case, we end up with

scaleless integrals, which are 0 in DR. It also means that the bare Σ(0) contains both UV

and collinear divergences. After subtracting UV divergence with Z
[1]
2 , we are only left with

collinear divergences. So the only effect of the external leg correction is to multiply the tree

diagram by a factor

− 1

2
Z

[1]
2 (198)

which should be understood as the collinear divergence in the one-loop external leg correc-

tion.

So, diagram (g) and its Hermitian conjugate give

f
(g+g†)
q/q (x) = −1

2
Z

[1]
2 f

[0]
q/q(x) + h.c. = −Z [1]

2 δ(1− x) =
g2CF
16π2

Sε
ε
δ(1− x) (199)

Note that we did not add the subscript ‘(0)’ because this is already renormalized.

7. Final result, combining (a)(b)(c) with (g)

Combing Eq. (188) and (199) gives the complete result for renormalized quark PDF in a

massless quark target at 1-loop level

f
[1]
q/q(x) =

(
−Sε
ε

)
g2CF
8π2

[
2

(1− x)+

− 1− x+
3

2
δ(1− x)

]
(200)

D. NLO: Gluon in quark

p

k

p− k

j j

FIG. 14: NLO cut diagrams for gluon PDF in a quark target.
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Now we turn to the calculation of gluon PDF. Contrary to quark PDF case, gluon PDF

does not enter the NLO calculation of DIS, so we will not compare with the full DIS diagram

before factorization, but the idea of how we end up with the factorized PDF diagrams is

very similar. It can be understood by imagining a new current that interacts directly with

gluons. Then we have the exact analogy to the quark PDF case.

For gluon PDF, the gauge link is in adjoint representation, and the gauge-link vertex

should be changed accordingly. The gluon PDF in a quark target is easier since there is

only one diagram, shown in Fig. 14, where we have used the same Lorentz index j for both

gluon-link vertices to indicate an implicit sum over j = 1, 2, as required by the parton vertex

in Eq. (53). Following the Feynman rules, we have

f
[1]
(0)g/q(x) =

1

xp+

∫
ddk

(2π)d
δ(k+ − xp+)

(
−i(k+gjµ − kjnµ)

) −i
k2 + iε

(
i(k+gjν − kjnν)

) i

k2 − iε×

× Tr

[
(2π)δ

(
(p− k)2

)
(p/− k/)

(
−igµεγµT aji

) p/
2

(
igµεγνT aij

)]

=
1

xp+
g2µ2εCF

∫
dk−d2−2εkT

(2π)d−1
δ
(
(p− k)2

) 1

(k2)2
×

× (k+gjµ − kjnµ) Tr

[
(p/− k/) γµ p/

2
γν
]

(k+gjν − kjnν) (201)

where 1/xp+ is from the gluon parton vertex,
(
−i(k+gjµ − kjnµ)

)
and (i(k+gjν − kjnν)) are

the vertex where the gluon connects with the gauge link, and the minus sign in the gluon

propagator is due to the −gµν numerator. a and ij are the color indices for gluon and quark,

respectively, and a, j are summed over, which gives the CF factor.

We have seen the δ ((p− k)2)
1

(k2)2
structures several times, in Fig. 8 for quark in a

gluon and Fig. 10(c) for quark in a quark. They have the same pinch structures, and we can

directly copy the results

δ
(
(p− k)2

) 1

(k2)2
= δ

(
k− +

k2
T

2(1− x)p+

)
1

2(1− x)p+

(
1− x
k2
T

)2

= δ

(
k− +

k2
T

2(1− x)p+

)
1− x
2p+

1

(k2
T )2

(202)

This naturally give a 1/k4
T singularity. However, the numerator will give an extra k2

T factor

so that the divergence is still logarithmic, as we will verify now.

The two gluon-link vertices give four terms, which we calculate one by one now. The first
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term is

k+gjµTr

[
(p/− k/) γµ p/

2
γν
]
k+gjν = (k+)2Tr

[
(p/− k/) γj p/

2
γj
]

= −(k+)2Tr

[
(p/− k/) p/

2
γjγj

]

= (2− 2ε)(k+)2Tr

[
(p/− k/) p/

2

]
= (2− 2ε)(k+)2(−2p · k) = 2(1− ε) x2

1− x (p+)2 k2
T (203)

where we have used the fact that p/ = p+γ− anticommutes with γj and γjγj = −(2 − 2ε).

The second term is

− kjnµTr

[
(p/− k/) γµ p/

2
γν
]
k+gjν = −kjk+Tr

[
(p/− k/) γ+ p/

2
γj
]

=− 2kjk+
[
(p− k)jp+

]
= 2x(p+)2k2

T (204)

The third term is

k+gjµTr

[
(p/− k/) γµ p/

2
γν
]

(−kjnν) = −kjk+Tr

[
(p/− k/) γj p/

2
γ+

]

=− 2kjk+
[
(p− k)jp+

]
= 2x(p+)2k2

T (205)

And the fourth term is

(−kjnµ)Tr

[
(p/− k/) γµ p/

2
γν
]

(−kjnν) = k2
TTr

[
(p/− k/) γ+ p/

2
γ+

]

= 2k2
T

[
2(p− k)+p+

]
= 4(1− x)(p+)2k2

T (206)

So the numerator is

(k+gjµ − kjnµ) Tr

[
(p/− k/) γµ p/

2
γν
]

(k+gjν − kjnν)

=2(p+)2k2
T

[
(1− ε) x2

1− x + 2x+ 2(1− x)

]
= 2(p+)2k2

T

[
(1− ε) x2

1− x + 2

]
(207)

We see that each term is proportional to k2
T .

Plugging Eq. (202) and (207) in Eq. (201), we then have

f
[1]
(0)g/q(x) =

1

xp+
g2µ2εCF

∫
d2−2εkT
(2π)d−1

1− x
2p+

1

(k2
T )2
· 2(p+)2k2

T

[
(1− ε) x2

1− x + 2

]

=
g2CF
8 π2

(4πµ2)ε

Γ(1− ε)

[
1 + (1− x)2

x
− εx

] ∫
dk2

T

k2
T

(k2
T )−ε (208)

The UV pole is canceled by Z
[1]
gq (x), so we have

Z [1]
gq (z) = −

(
Sε
ε

)
g2CF
8 π2

[
1 + (1− z)2

z

]
(209)
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And then we have the renormalized gluon PDF in a quark target

f
[1]
g/q(x) = −

(
Sε
ε

)
g2CF
8 π2

[
1 + (1− z)2

z

]
(210)

and the splitting kernel

P [1]
gq (z) =

g2CF
8π2

[
1 + (1− z)2

z

]
(211)

E. NLO: Gluon in gluon

l

j j

p

p− l

l − p

k

j j

p

p− k

p− k

k

j j

p

p− k

k

j j

1PI +c.t.

(a) (b) (c) (d)

FIG. 15: The diagrams of one-loop gluon PDF in a gluon target. Diagrams (b)(c)(d) should

be accompanied by their Hermitian conjugates. Three cut diagrams where both ends of a gluon

propagator attach to the Wilson line vanish and are not shown.

The diagrams for gluon PDF in a gluon target are shown Fig. 15, where diagrams (b)(c)(d)

should be accompanied by their Hermitian conjugates. Three cut diagrams where both ends

of a gluon propagator attach to the Wilson line (like Fig. 11) vanish for the same reason

and are not shown. The pinch structures and rapidity divergences (if any) follow exactly the

diagrams for quark PDF in quark target, because they have the similar structures. These will

not be analyzed in detail again. Although the pinch structures (propagator denominators)

are the same, it is the numerators that make them have different results (and possibly

different strengths of pinch singularities).
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1. Virtual gluon radiation: (a)

Following the Feynman rules, diagram (a) and its Hermitian conjugate give

f
(a+a†)
(0) g/g (x) =

1

xp+
δ(p+ − xp+)

∫
ddl

(2π)d
i

n · (l − p) + iε

−i
l2 + iε

−i
(p− l)2 + iε

×

×
[
−i(p+gjρ − ljnρ)

] [
i(p+gjν − pjnν)

]
(−gµε nλ fcab) εµ(p)εν∗(p)×

× (−gµεfabc)
[
(p+ l)λgµρ + (p− 2l)µgρλ + (l − 2p)ρgλµ

]
+ h.c.

= −ig2µ2εCA δ(1− x)
1

(p+)2

∫
ddl

(2π)d
1

l+ − p+

1

l2 + iε

1

(p− l)2 + iε

εµ(p)(p+gjρ − ljnρ)
[
(p+ l)+gµρ + (p− 2l)µnρ + (l − 2p)ρnµ

]
(p+gjν − pjnν)εν∗(p) + h.c.

(212)

where we have identified k = p and used the δ(1 − x) function to set x = 1 in the parton

vertex. a, b, c are the gluon color factors and b, c are summed over to give CA
∑

b,c

fabcfabc = CA = Nc. (213)

The propagators are the same as Eq. (154) for the diagram (a) in Fig. 10. So when the

integral of l− is only non-zero when 0 < l+ < p+, and then l2 and (p − l)2 give l− poles

on the lower and upper half planes respectively. Picking the pole of (p − l)2 gives, from

Eq. (160) and (161),

1

l2 + iε

1

(p− l)2 + iε
= −p

+ − l+
p+

1

l2T

2πi

−2(p+ − l+)
δ

(
l− +

l2T
2(p+ − l+)

)

=
iπ

p+

1

l2T
δ

(
l− +

l2T
2(p+ − l+)

)
. (214)

The numerator is independent of l− and can be calculated directly

εµ(p)(p+gjρ − ljnρ)
[
(p+ l)+gµρ + (p− 2l)µnρ + (l − 2p)ρnµ

]
(p+gjν − pjnν)εν∗(p)

=(p+gjρ − ljnρ)
[
(p+ l)+ερ(p)− 2l · ε(p)nρ

] (
p+ εj∗(p)

)

=
[
p+(p+ l)+εj(p)

] (
p+ εj∗(p)

)

=(p+)2(p+ + l+) (215)

where we used 0 = p · ε(p) = n · ε(p) = n2 = nj and
∑

j ε
j(p)εj∗(p) = 1. Then we have

f
(a+a†)
(0) g/g (x) = 2πg2µ2εCA δ(1− x)

1

(p+)3

∫ p+

0

dl+
∫
d2−2εlT
(2π)d

1

l+ − p+

1

l2T
(p+)2(p+ + l+)

= − δ(1− x)
g2CA
8π2

(4πµ2)ε

Γ(1− ε)

∫ 1

0

dα
1 + α

1− α

∫ ∞

0

dl2T
l2T

(l2T )−ε (216)
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where the unregulated divergence at α → 1 reflects the rapidity divergence. As before,

lT integral contains logarithmic collinear divergence, arising from pinched l2 and (p − l)2

propagators, and logarithmic UV divergence as a result of extending lT integration to infinity.

2. Real gluon radiation, part one: (b)

Diagram (b) together with its Hermitian conjugate gives

f
(b+b†)
(0) g/g(x) =

1

xp+

∫
ddk

(2π)d
δ(k+ − xp+)

−i
n · (p− k)− iε

−i
k2 + iε

(−2π)δ
(
(p− k)2

)
×

×
[
−i(k+gjρ − kjnρ)

] [
i(k+gjν − pjnν)

]
(+gµε nλ fcab) εµ(p)εν∗(p)×

× (−gµεfabc)
[
(p+ k)λgµρ + (p− 2k)µgρλ + (k − 2p)ρgλµ

]
+ h.c.

= −g2µ2εCA
1

xp+

∫
dk−d2−2εkT

(2π)d−1

1

p+ − k+

1

k2 + iε
δ
(
(p− k)2

)

εµ(p)(k+gjρ − kjnρ)
[
(p+ k)+gµρ + (p− 2k)µnρ + (k − 2p)ρnµ

]
(k+gjν − pjnν)εν∗(p) + h.c.

(217)

Note the ‘−’ sign caused by the fabc to the right of the cut line, which is highlighted by red

font, as given by the first rule on p. 24. 14 Here we can not directly write down the result

based on f
(a+a†)
(0) g/g , because although these two expressions are very similar, with k playing

the role of l in f
(b+b†)
(0) g/g , there are still two differences:

• The vertices connecting gluon parton lines to the gauge link contain k+ = xp+ in (b),

while in (a) it is simply p+;

• The parton vertex contains an extra factor of 1/x in (b), which is set to 1 by the

δ(1− x) function in (a).

So unlike the quark PDF case where the result of the real emission is just the integrand of

the virtual one, here we had better be careful to calculate explicitly. The δ function sets a

pinch to the 1/k2 propagator when kT is small:

1

k2 + iε
δ
(
(p− k)2

)
=

(
−p

+ − k+

p+

1

k2
T

)
1

2(p+ − k+)
δ

(
k− +

k2
T

2(p+ − k+)

)

= − 1

2p+

1

k2
T

δ

(
k− +

k2
T

2(p+ − k+)

)
(218)

14 The effects caused by this sign are all fonted in red in the following.
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The numerator is

εµ(p)(k+gjρ − kjnρ)
[
(p+ k)+gµρ + (p− 2k)µnρ + (k − 2p)ρnµ

]
(k+gjν − pjnν)εν∗(p)

=(k+gjρ − kjnρ)
[
(p+ k)+ ερ(p)− 2k · ε(p)nρ

]
(k+εj∗(p))

=(k+)2 (p+ k)+εj(p)εj∗(p) = x2(1 + x)(p+)3 (219)

So, we have

f
(b+b†)
(0) g/g(x) = −g2µ2εCA

1

xp+

∫
d2−2εkT
(2π)d−1

1

p+ − k+

( −1

2p+

1

k2
T

)
x2(1 + x)(p+)3 + h.c.

= +
g2CA
8π2

(4πµ2)ε

Γ(1− ε)
x(1 + x)

1− x

∫
dk2

T

k2
T

(k2
T )−ε (220)

This also has rapidity divergence at x → 1, but there is an extra factor x compared to the

integrand of Eq. (216). The rapidity divergence will get canceled when combining (a) and

(b).

3. Cancelation of rapidity divergence: combining (a) and (b)

Combing Eq. (216) and (220) gives

f
(a+b)
(0) g/g(x) =

g2CA
8π2

(4πµ2)ε

Γ(1− ε)

[
x(1 + x)

1− x − δ(1− x)

∫ 1

0

dα
1 + α

1− α

] ∫
dk2

T

k2
T

(k2
T )−ε (221)

The square bracket can be rewritten as a plus distribution:

[· · · ] =
(x− 1)(x+ 2) + 2

1− x − δ(1− x)

∫ 1

0

dα
−1 + α + 2

1− α

= −x− 2 +
2

1− x − δ(1− x)

∫ 1

0

dα

(
−1 +

2

1− α

)

=
2

(1− x)+

− x− 2 + δ(1− x) (222)

so

f
(a+b)
(0) g/g(x) =

g2CA
8π2

(4πµ2)ε

Γ(1− ε)

[
2

(1− x)+

− x− 2 + δ(1− x)

] ∫
dk2

T

k2
T

(k2
T )−ε (223)

which is well defined as a distribution of x, including the end point x = 1.
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4. Real gluon radiation, part one: (c)

Diagram (c) contributes

f
(c)
(0) g/g(x) =

1

xp+

∫
ddk

(2π)d
δ(k+ − xp+)

−i
k2 + iε

i

k2 − iε (−2π)δ
(
(p− k)2

)
×

×
[
−i(k+gjρ − kjnρ)

] [
i(k+gjσ − kjnσ)

]
(−gµεfabc)(+gµεfabc)εµ(p)ε∗ν(p)×

×
[
(p+ k)λgµρ + (p− 2k)µgρλ + (k − 2p)ρgλµ

]
×

×
[
−(p+ k)λgνσ + (2k − p)νgσλ + (2p− k)σgλν

]

= −g2µ2εCA
1

xp+

∫
dk−d2−2εkT

(2π)d−1

1

(k2)2
δ
(
(p− k)2

)
×

× εµ(p)(k+gjρ − kjnρ)
[
(p+ k)λgµρ + (p− 2k)µgρλ + (k − 2p)ρgλµ

]
×

× ε∗ν(p)(k+gjσ − kjnσ)
[
(p+ k)λgνσ + (p− 2k)νgσλ + (k − 2p)σgλν

]
(224)

Note again the ‘−’ sign caused by the fabc to the right of the cut line, which is highlighted

by red font, as given by the first rule on p. 24. 15 We calculate each line one by one. The

two propagators of k together with the δ function give, as in Eq. (202)

δ
(
(p− k)2

) 1

(k2)2
= δ

(
k− +

k2
T

2(1− x)p+

)
1− x
2p+

1

(k2
T )2

(225)

The second line is denoted as Ljλ

Ljλ = εµ(p)(k+gjρ − kjnρ)
[
(p+ k)λgµρ + (p− 2k)µgρλ + (k − 2p)ρgλµ

]

= (k+gjρ − kjnρ)
[
(p+ k)λερ(p)− 2k · ε(p)gρλ + (k − 2p)ρελ(p)

]

= k+
[
(p+ k)λεj(p)− 2k · ε(p)gjλ + kjελ(p)

]
− kj

[
−2k · ε(p)nλ + (k − 2p)+ελ(p)

]

= 2
(
k+gjλ − kjnλ

)
(kT · εT ) + k+(k + p)λεj(p) + 2kjp+ελ(p) (226)

where in the last line we organized in terms of ε(p), and we have used k·ε = −kjεj = −kT ·εT .

The third line Rjλ can be obtained from Ljλ by just changing ε to ε∗

Rjλ = 2
(
k+gjλ − kjnλ

)
(kT · ε∗T ) + k+(k + p)λεj∗(p) + 2kjp+ελ∗(p) (227)

15 The effects caused by this sign are all fonted in red in the following.
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Then the product of Ljλ and Rjλ with j and λ contracted is 16

LjλRjλ = 4
(
k+gjλ − kjnλ

) (
k+gjλ − kjnλ

)
(kT · εT ) (kT · ε∗T ) + (k+)2(k + p)2 − 4(p+)2k2

T

+
[
2k+(k + p)λ

(
k+gjλ − kjnλ

)
(kT · εT ) εj∗(p) + c.c.

]

+
[
4p+kj

(
k+gjλ − kjnλ

)
ελ∗(p) (kT · εT ) + c.c.

]

+
[
−2k+p+ (kT · εT ) (kT · ε∗T ) + c.c.

]
(228)

The 2nd-4th lines sum up to 0, so we have

LjλRjλ = 4(k+)2gjj (kT · εT ) (kT · ε∗T ) + (k+)2(k + p)2 − 4(p+)2k2
T (229)

After integrating over k−, the denorminator is spherically symmetric with kT , which allows

us to do the replacement

kikj → 1

2− 2ε
k2
T δ

ij (230)

in the numerator. Then we have

(kT · εT ) (kT · ε∗T )→ 1

2− 2ε
k2
T ε

j(p)εj∗(p) =
1

2− 2ε
k2
T (231)

So,

LjλRjλ → 4(k+)2 (−(2− 2ε))
1

2− 2ε
k2
T + (k+)2(k + p)2 − 4(p+)2k2

T

= −4x2 (p+)2k2
T −

2x2

1− x (p+)2k2
T − 4(p+)2k2

T

= −2(p+)2k2
T

[
2x2 +

x2

1− x + 2

]
(232)

Therefore, the diagram (c) is

f
(c)
(0) g/g(x) = +g2µ2εCA

1

xp+

∫
d2−2εkT
(2π)d−1

1− x
2p+

1

(k2
T )2
· 2(p+)2k2

T

[
2x2 +

x2

1− x + 2

]

= +
g2CA
8π2

(4πµ2)ε

Γ(1− ε)

[
2x(1− x) + x+

2(1− x)

x

] ∫
dk2

T

k2
T

(k2
T )−ε (233)

5. UV subtraction and splitting kernel: combining (a)(b)(c)

Combining (a)(b)(c) gives

f
(a+b+c)
(0) g/g (x) = +

g2CA
8π2

(4πµ2)ε

Γ(1− ε)

[
2

(
1

(1− x)+

+ x(1− x)− 1 +
(1− x)

x

)
+ δ(1− x)

] ∫
dk2

T

k2
T

(k2
T )−ε

(234)

16 Here we carelessly write both λ as upper indices, in order to have a more symmetric and neat form. It

should be understood as the usual Lorentz index contraction between upper and lower indices.
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This is 0 in DR, but it contains UV and collinear divergences and is not 0 after renormal-

ization. Diagram (d) does not give new UV divergence, so the UV pole of the gluon PDF is

given by the above expression, which is subtracted by (ZggZ3)[1](x). So we have

(ZggZ3)[1](x) = −Sε
ε

g2CA
8π2

[
2

(
1

(1− x)+

+ x(1− x)− 1 +
1− x
x

)
+ δ(1− x)

]
(235)

And then the renormalized gluon PDF (including only (a)(b)(c), incomplete so far) is

f
(a+b+c)
g/g (x) = 0 + (ZggZ3)[1](x) = −Sε

ε

g2CA
8π2

[
2

(
1

(1− x)+

+ x(1− x)− 1 +
1− x
x

)
+ δ(1− x)

]

(236)

Zgg is obtained by subtracting Z
[1]
3 , the gluon field renormalization factor, which in Feynman

gauge takes the form

Z
[1]
3 =

g2

8π2

Sε
ε

[
5

6
CA −

2

3
TFnf

]
(237)

where nf is the number of active quark flavors. So we have

Z [1]
gg (z) = (ZggZ3)[1](z)− Z [1]

3 δ(1− z)

= −Sε
ε

g2

8π2

[
2CA

(
1

(1− z)+

+ z(1− z)− 1 +
1− z
z

)
+

(
11

6
CA −

2

3
nfTF

)
δ(1− z)

]

(238)

and the g → g splitting/evolution kernel

P [1]
gg (z) =

g2

8π2

[
2CA

(
1

(1− z)+

+ z(1− z)− 1 +
1− z
z

)
+

(
11

6
CA −

2

3
nfTF

)
δ(1− z)

]

=
g2

8π2

[
2CA

(
z

(1− z)+

+ z(1− z) +
1− z
z

)
+

(
11

6
CA −

2

3
nfTF

)
δ(1− z)

]

(239)

In the second line we used the algebra of plus distribution (also in Eq. (179)) to get the

same form as Collins Eq. (9.24).

6. External leg correction (d)

Now we include the external leg correction (d). Similar to the quark case, the whole effect

of the radiative correction on the external on-shell leg is to give a factor of the square root
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of the residue of the full (renormalized) propagator at its pole. We denote the one-particle-

irreducible (1PI) two-point gluon function as

iΠµν
ab (p) = 1PI

µ, a ν, b

p p

= (p2gµν − pµpν) δab iΠ2(p2) (240)

where the counterterms have been included and the tensor structure (p2gµν−pµpν) has been

factored out by virtue of Ward identity. At O(g2) order, Π2(p2) has been calculated in

Appendix A 2 a.

In the general Rξ gauge, the full gluon propagator is

iGµν
ab (p) =

p p

µ, a ν, b

=

p

µ, a ν, b

+ 1PI
µ, a ν, b

p p

+

p

µ, a

p

1PI

p

1PI
ν, b

+ · · ·

=
−i

p2 + iε

(
gµν − pµpν

p2
+ ξ

pµpν

p2

)
δab

+
−i

p2 + iε

(
gµλ −

pµpλ
p2

+ ξ
pµpλ
p2

)
δac ·

[
iΠ2(p2)δcd(p

2gλρ − pλpρ)
]
×

× −i
p2 + iε

(
gρν − pρpν

p2
+ ξ

pρpν

p2

)
δcb + · · ·

=
−i

p2 + iε

(
gµν − pµpν

p2
+ ξ

pµpν

p2

)
δab +

−i
p2 + iε

(
gµν − pµpν

p2

)
Π(p2)δab · · ·

=
−i

p2 + iε

(
gµν − pµpν

p2

)
δab
[
1 + Π(p2) + Π2(p2) + · · ·

]
+
−i

p2 + iε
· ξ p

µpν

p2
δab

=
−i

p2 [1− Π(p2)] + iε

(
gµν − pµpν

p2

)
δab +

−i
p2 + iε

· ξ p
µpν

p2
δab (241)

where we have separated the two tensor projection structures gµν − pµpν/p2 and pµpν/p2,
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and used
(
gµλ −

pµpλ
p2

)(
gλν −

pλpν
p2

)
=

(
gµν −

pµpν
p2

)
(242)

(
gµλ −

pµpλ
p2

)
pλpν
p2

= 0 (243)

pµpλ
p2

pλpν
p2

=
pµpν
p2

(244)

The transverse structure of 1PI diagrams leave the ξ term unchanged, and keep the pole of

the propagator at p2 = 0. But it modifies to residue to be

residue =
1

1− Π(0)
= 1 + Π(0) + · · · (245)

Thus the one-loop correction of the gluon externel leg gives a factor

√
residue =

1√
1− Π(0)

= 1 +
1

2
Π(0) +O(g4) (246)

From Appendix A 2 a f, Π(p2) contains the bare term and the counterterm

Π(p2) = Π(0)(p
2)− Z [1]

3 (247)

where Z
[1]
3 is given in Eq. (A36). When taking p2 to 0, Π(0)(0) is a scaleless integral in DR

and thus vanishes. And then we have

Π(0) = −Z [1]
3 (248)

So the external diagram (d) contributes a factor −2−1Z
[1]
3 to the bare gluon PDF. Together

with its Hermitian conjugate, we have

f
(g+g†)
g/g (x) = −Z [1]

3 δ(1− x) (249)

7. Final result, combining (a)(b)(c) with (d)

Combing Eq. (236) and (249) gives the complete result for renormalized qluon PDF in a

gluon target at 1-loop level

f
[1]
g/g(x) = −Sε

ε

g2

8π2

[
2CA

(
1

(1− x)+

+ x(1− x)− 1 +
1− x
x

)
+

(
11

6
CA −

2

3
nfTF

)
δ(1− x)

]

(250)
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Appendix A: Field Renormalization

1. Quark field renormalization: Z2

a. Feynman gauge

p

l

p− l p p p

(a) (b)

FIG. 16: Self energy diagrams for quark in QCD. (a) is the one-loop diagram. (b) is the counterterm

interaction.

The quark field renormalization is related to diagrams shown in Fig. 16. In Feynman

gauge, the diagram (a) gives

iΣ
(0)
2 = (−igµεγµT aik)

∫
ddl

(2π)d
i(p/− l/)

(p− l)2 + iε

−igµν
l2 + iε

(−igµεγνT akj)

= −g2µ2εCF δij

∫
ddl

(2π)d
γµ(p/− l/)γµ

(l2 + iε) ((p− l)2 + iε)

= (d− 2)g2µ2εCF δij

∫
ddl

(2π)d
p/− l/

(l2 + iε) ((p− l)2 + iε)

(A1)

where we have used massless partons. Using Feynman parametrization for the propagators

gives

iΣ
(0)
2 = (d− 2)g2µ2εCF δij

∫ 1

0

dx

∫
ddl

(2π)d
p/− l/

[(l − xp)2 − x(x− 1)p2 + iε]2

= 2(1− ε)g2µ2εCF δij

∫ 1

0

dx

∫
ddl

(2π)d
(1− x)p/

[l2 − x(x− 1)p2 + iε]2
(A2)

This has UV divergence

UV(iΣ
(0)
2 ) = 2g2CF δij

∫ 1

0

dx(1− x)p/

[
i

(4π)2

Sε
ε

]

=
i

(4π)2

Sε
ε
g2CF δij p/ (A3)
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This is canceled by the counterterm diagram (b)

i(Z2 − 1)[1] δij p/ (A4)

so we have

(Z2 − 1)[1] = Z
[1]
2 = −g

2CF
16π2

Sε
ε

(A5)

where the superscript ‘[1]’ denotes the perturbation order in terms of αs.

2. Gluon field renormalization: Z3

a. Feynman gauge

p p

µ, a ν, b

k

k − p

p p

µ, a ν, b

k − p

k

p

µ, a

p

ν, b

k

(a) (b) (c)

p p

µ, a ν, b

k

k − p p

µ, a

p

ν, b

(d) (e)

FIG. 17: Self energy diagrams for gluon in QCD. (a) is the quark loop diagram. (b) is gluon bubble

diagram. (c) is the seagull diagram. (d) is the ghost loop diagram. (e) is the counterterm diagram.

Gluon self-energy diagrams at 1-loop level are shown in Fig. 17. The superficial degree

of UV divergence is quadratic, which shows up as a pole at d = 2 in DR, but due to gauge

invariance, quadratic divergences cancel and we only have UV pole at d = 4. The sum of

them have the structure

iΠµν
ab (p) = (p2gµν − pµpν) δab iΠ2(p2) (A6)

holding for any value of d.
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a. Fermion Loop. Diagram (a) contributes only log divergence and it alone satisfies

the structure in Eq. (A6) because Ward identity holds for this diagram alone. It gives

iΠ
(a)µν
ab (p) = −nf

∫
ddk

(2π)d
Tr

[(
−igµεT aijγµ

) i(k/− p/)
(k − p)2 + iε

(
−igµεT bjiγν

) ik/

k2 + iε

]

= −g2µ2εnfTF δab

∫
ddk

(2π)d
Tr [γµ(k/− p/)γνk/]

((k − p)2 + iε) (k2 + iε)
(A7)

where we used massless quarks and nf is the number of active quark flavors. i, j are the color

indices of the quarks in the loop and are summed over, giving TF . Performing Feynman

parametrization to the denominators gives

1

((k − p)2 + iε) (k2 + iε)
=

∫ 1

0

dx
1

[(k − xp)2 − x(x− 1)p2 + iε]2
(A8)

Then we shift k → k + xp in the integrand and keep only the even powers of k. The

numerator becomes

Tr [γµ(k/− p/)γνk/]→ 4
[

2kµkν − k2gµν + 2x(x− 1)pµpν − x(x− 1)p2gµν
]

→ 4

[
2

d
k2 gµν − k2gµν + 2x(x− 1) pµpν − x(x− 1)p2 gµν

]

= 4

[(
2

d
− 1

)
k2 gµν + 2x(x− 1) pµpν − x(x− 1)p2 gµν

]
(A9)

where in the second line we replaced kµkν by
1

d
k2gµν since they give the same result after

k integration. We see that the d = 2 pole from the k2 term is canceled by the coefficient

2/d − 1 which is 0 at d = 2, so we only have a pole at d = 4, representing logarithmic

divergence. Then we have

iΠ
(a)µν
ab (p) = −4g2µ2εnfTF δab

∫ 1

0

dx

∫
ddk

(2π)d

(
2
d
− 1
)
k2 gµν + x(x− 1) (2pµpν − p2 gµν)

[k2 − x(x− 1)p2 + iε]2

(A10)

The k integration gives two parts

∫
ddk

(2π)d

(
2
d
− 1
)
k2

[k2 − x(x− 1)p2 + iε]2
= −

(
2

d
− 1

)
d

2

i

(4π)d/2
Γ(1− d/2)

[−x(1− x)p2 − iε]1−d/2

= − i

(4π)d/2
Γ(2− d/2)

[−x(1− x)p2 − iε]1−d/2
(A11)

and
∫

ddk

(2π)d
1

[k2 − x(x− 1)p2 + iε]2
=

i

(4π)d/2
Γ(2− d/2)

[−x(1− x)p2 − iε]2−d/2
(A12)
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so the k integral is

∫
dk[· · · ] =

i

(4π)d/2
Γ(2− d/2)

[−x(1− x)p2 − iε]2−d/2
[
x(1− x)p2gµν + x(x− 1)

(
2pµpν − p2 gµν

)]

=
i

(4π)d/2
Γ(2− d/2)

[−x(1− x)p2 − iε]2−d/2
[
2x(1− x)

(
p2gµν − pµpν

)]
(A13)

where the tensor structure (p2gµν − pµpν) appears before integrating over x. We then have

iΠ
(a)µν
ab (p) = −δab

(
p2gµν − pµpν

) 8ig2

(4π)2
nfTFΓ(ε)

∫ 1

0

dx x(1− x)

(
4πµ2

−x(1− x)p2 − iε

)ε

= −δab
(
p2gµν − pµpν

) 8ig2

(4π)2
nfTF

∫ 1

0

dx x(1− x)

[
1

ε
− γ + ln

(
4πµ2

−x(1− x)p2 − iε

)]

(A14)

The 1/ε is the UV pole arising from the loop momentum k → ∞. There is also a singu-

larity as p2 → 0, which is a collinear singularity. It arises from the configuration where

quark and antiquark are collinear to the gluon line and propagate in the forward direction,

corresponding to a pinch surface

kµ = z pµ, (p− k)µ = (1− z) pµ, 0 < z < 1 (A15)

The collinear singularity and the UV pole add up to 0 when p2 = 0. This can be seen from

Eq. (A10), which becomes a scaleless integral in DR when we take p2 = 0, so is 0. The UV

pole is

UV {iΠ(a)µν
ab (p)} = −δab

(
p2gµν − pµpν

) ig2

(4π)2

4

3
nfTF

Sε
ε

(A16)

which will be canceled by the counterterm diagram (e). The renormalized diagram (a) is

then

iΠ
(a,ren)µν
ab (p) = −δab

(
p2gµν − pµpν

) ig2

(4π)2
nfTF

[
4

3
ln

(
µ2

−p2 − iε

)
+

20

9

]
(A17)

We have kept iε with −p2 to make it clear how to deal with negative −p2 when we need to

pick up the imaginary part.

66



b. Gluon bubble. Diagram (b) gives

iΠ
(b)µν
ab (p) =

1

2

∫
ddk

(2π)d
−i

(k − p)2 + iε

−i
k2 + iε

×

× (−gµεfacd) [(p+ k)σgµρ + (p− 2k)µgρσ + (k − 2p)ρgσµ]×

× (−gµεfbcd) [−(p+ k)σgνρ − (p− 2k)νgρσ − (k − 2p)ρgσν ]

=
1

2
g2µ2εCA δab

∫
ddk

(2π)d
Nµν

((k − p)2 + iε) (k2 + iε)
×

× [(p+ k)σgµρ + (p− 2k)µgρσ + (k − 2p)ρgσµ]×

× [(p+ k)σgνρ + (p− 2k)νgρσ + (k − 2p)ρgσν ]

(A18)

where the numerator Nµν is

Nµν = [(p+ k)σgµρ + (p− 2k)µgρσ + (k − 2p)ρgσµ] · [(p+ k)σgνρ + (p− 2k)νgρσ + (k − 2p)ρgσν ]

= (p+ k)2gµν + d (p− 2k)µ(p− 2k)ν + (k − 2p)2gµν

+ [(p+ k)µ(p− 2k)ν + (p+ k)ν(k − 2p)µ + (p− 2k)µ(k − 2p)ν + (µ↔ ν)] (A19)

Using the Feynman parametrization formula in Eq. (A8), we replace k by k + xp, throw

away the linear term of k, and obtain the numerator

Nµν → 2(2d− 3)kµkν + 2k2gµν +
[
d(1− 2x)2 − 6

(
x2 − x+ 1

)]
pµpν + p2gµν

(
2x2 − 2x+ 5

)

→ 2

d
(2d− 3)k2gµν + 2k2gµν +

[
d(1− 2x)2 − 6

(
x2 − x+ 1

)]
pµpν + p2gµν

(
2x2 − 2x+ 5

)

= 6

(
1− 1

d

)
k2gµν +

[
d(1− 2x)2 − 6

(
x2 − x+ 1

)]
pµpν + p2gµν

(
2x2 − 2x+ 5

)

≡ Nµν
b (A20)

where in the second line we replaced kµkν by
1

d
k2gµν . So diagram (b) gives

iΠ
(b)µν
ab (p) =

1

2
g2µ2εCA δab

∫ 1

0

dx

∫
ddk

(2π)d
Nµν
b

[k2 − x(x− 1)p2 + iε]2
(A21)

with the new numerator given by Eq. (A20). We notice that the d = 2 pole is not canceled,

so this diagram alone does not satisfy gauge invariance or Ward identity. Only the sum of

(b)(d)(e) will do.
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c. Four-point gluon bubble. Diagram (c) gives

iΠ
(c)µν
ab (p) =

1

2
(−ig2µ2ε)

∫
ddk

(2π)d
−i

k2 + iε
×

× [facdfbcd (gµνgρρ − gµρgρν) + facdfbcd (gµνgρρ − gµρgρν)]

= −g2µ2εCAδab(d− 1)gµν
∫

ddk

(2π)d
1

k2 + iε
(A22)

This is a scaleless integral in DR and formally vanishes. But it contains quadratic diver-

gence, which shall cancel part of that in diagram (b). In DR, the quadratic divergence

cancels against the logarithmic divergence. Although the final result will not be affected,

it is convenient to separate the quadratic and log divergences and see the explicit cancela-

tion of quadratic divergence. By multipling a factor (k − p)2/(k − p)2 and using Feynman

parametrization (A8) we get

iΠ
(c)µν
ab (p) = −g2µ2εCAδab(d− 1)gµν

∫
ddk

(2π)d
(k − p)2

(k2 + iε) ((k − p)2 + iε)

= −g2µ2εCAδab(d− 1)gµν
∫ 1

0

dx

∫
ddk

(2π)d
k2 + (1− x)2p2

[k2 − x(x− 1)p2 + iε]2
(A23)

where k2 gives quadratic divergence and (1 − x)2p2 gives logarithmic divergence. Despite

the appearance, this integral still vanishes after integrating over k and x (for arbitrary d).

Note that the combination of (b) and (c) does not cancel the pole at d = 2. This is a sign

of a chain of violations: first, this means that gluon will acquire a mass through radiative

corrections; second, gauge invariance is not retained; third, a longitudinal component of

gluon field (a new degree of freedom) is generated, violating unitarity; fourth, Ward identity

is not satisfied (as a result of gauge invariance breaking and longitudinal component). This

means that the ghost bubble (d) is necessary to restore gauge invariance, unitarity, and

Ward identity.

d. Ghost bubble. The ghost bubble diagram diagram (d) gives

iΠ
(d)µν
ab (p) = −

∫
ddk

(2π)d
i

k2 + iε

i

(k − p)2 + iε
(gfdack

µ) (gfcbd(k − p)ν)

= −g2µ2εCAδab

∫
ddk

(2π)d
kµ(k − p)ν

(k2 + iε) ((k − p)2 + iε)

= −g2µ2εCAδab

∫ 1

0

dx

∫
ddk

(2π)d

1
d
k2gµν + x(x− 1)pµpν

[k2 − x(x− 1)p2 + iε]2
(A24)

where the overall negative sign is from the ghost loop and in the third line we have performed

Feynman parametrization, shifted the momentum k and replaced kµkν by
1

d
k2gµν .
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e. Combination of (a)(b)(c)(d). First we shall see the cancelation of quadratic diver-

gence among the gluon loop and ghost loop. The k2 coefficient in the sum of (b)(c)(d)

is

1

2
· 6
(

1− 1

d

)
− (d− 1)− 1

d
= −(d− 2)2

d
(A25)

apart from the overall coefficient g2µ2εCAδab. It indeed gives a zero at d = 2 and cancels the

pole at d = 2. So we are left with only log divergence.

Summing over diagrams (b)(c)(d) gives

iΠ
(b+c+d)µν
ab (p) = g2µ2εCAδab

∫ 1

0

dx

∫
ddk

(2π)d
Nµν

[k2 − x(x− 1)p2 + iε]2
(A26)

with the new numerator Nµν being

Nµν = −(d− 2)2

d
k2gµν +

1

2
p2gµν

(
2x2 − 2x+ 5

)
− (d− 1)(1− x)2p2gµν

+
1

2

[
d(1− 2x)2 − 6

(
x2 − x+ 1

)]
pµpν + x(1− x)pµpν (A27)

Before evaluating the k integral, we notice that the denominator has the structure x(1− x)

which is symmetric with x→ 1−x, i.e., symmetric with the axis x = 1/2. So only the pieces

symmetric with x → 1 − x in the numerator will give non-zero results. We select them by

rewriting the x polynomial as a polynomial of (1 − 2x), and throwing away the odd-power

terms. This gives

Nµν → −(d− 2)2

d
k2gµν + p2gµν

(
6− d

2
+ (d− 2)x(1− x)

)
+ pµpν

(
2(2− d)x(1− x) +

d− 6

2

)

= −(d− 2)2

d
k2gµν − (d− 2)x(1− x)p2gµν (A28)

The only terms thown is the (1− 2x)/2 in (1− x)2 in the thrid term of Eq. (A27). We have

expressed the result in terms of x(1− x). Then the integration of k gives

iΠ
(b+c+d)µν
ab (p) =

i

(4π)d/2
Γ(2− d/2)g2µ2εCAδab · (p2gµν − pµpν)×

×
∫ 1

0

dx

(
1

−x(1− x)p2 − iε

)2−d/2 [
6− d

2
+ 2(d− 2)x(1− x)

]

=
ig2

(4π)2
CA δab · (p2gµν − pµpν)

(
4πµ2

−p2 − iε

)ε
Γ(ε)×

×
∫ 1

0

(
1

x(1− x)

)ε [
6− d

2
+ 2(d− 2)x(1− x)

]
(A29)
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We see that here (p2gµν − pµpν) structure appears partly after the integration of x since we

already used the property of x integral. Integrating out x then gives

iΠ
(b+c+d)µν
ab (p) =

i

(4π)d/2
Γ(2− d/2)g2µ2εCAδab · (p2gµν − pµpν)×

×
[

6− d
2

B(1− ε, 1− ε) + 2(d− 2)B(2− ε, 2− ε)
]

=
ig2

(4π)2
CA δab · (p2gµν − pµpν)

(
5

3

Sε
ε

+
5

3
ln

µ2

−p2 − iε +
31

9
+O(ε)

)
(A30)

Similar to fermion loop, p2 = 0 gives a collinear divergence, arising from pinch singularity.

This pole cancels the UV pole in DR since taking p2 = 0 results in a scaleless integral (see

Eq. (A26)) which is 0 in DR. The UV pole is

UV {iΠ(b+c+d)µν
ab (p)} = δab

(
p2gµν − pµpν

) ig2

(4π)2

(
5

3
CA

Sε
ε

)
(A31)

This pole will be removed by counterterm diagram (e), and the renormalized two-point

function is

iΠ
(ren)(b+c+d)µν
ab (p) =

ig2

(4π)2
CA δab · (p2gµν − pµpν)

(
5

3
ln

µ2

−p2 − iε +
31

9

)
(A32)

Combining with Eq. (A16) and Eq. (A17), we have the total UV pole

UV {iΠµν
ab (p)} = δab

(
p2gµν − pµpν

) ig2

(4π)2

(
5

3
CA −

4

3
nfTF

)
Sε
ε

(A33)

and the renormalized two point function

iΠ
(ren)µν
ab (p) =

ig2

(4π)2
CA δab · (p2gµν − pµpν)

[(
5

3
CA −

4

3
nfTF

)
ln

(
µ2

−p2 − iε

)
+

31CA − 20nfTF
9

]

(A34)

f. Counterterm diagram. The counterterm diagram (e) gives a contribution

iΠ
(c.t.)µν
ab (p) = −i (Z3 − 1) δab(p

2gµν − pµpν) (A35)

This shall cancel the UV poles of (a-d) in Eq. (A33), so we have

Z
[1]
3 = (Z3 − 1)[1] =

g2

(4π)2

(
5

3
CA −

4

3
nfTF

)
Sε
ε

(A36)

The renormalized two-point function is in fact

iΠ
(ren)µν
ab (p) = iΠ

(abcd)µν
ab (p) + iΠ

(c.t.)µν
ab (p) (A37)
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As p2 = 0, the bare term vanishes, and all we have is the counterterm contribution, so

iΠ
(ren)µν
ab (p) = iΠ

(c.t.)µν
ab (p) = −iZ [1]

3 δab(p
2gµν − pµpν) as p2 = 0 (A38)

This then gives

Π2(0) = −Z [1]
3 = − g2

(4π)2

(
5

3
CA −

4

3
nfTF

)
Sε
ε

(A39)
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