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Abstract

ITER has now reached the stage where about half of the large magnet components have arrived on site and many more
are nearing completion at manufacturing locations distributed throughout the ITER partners. Although we still have

several years of challenging on-site assembly ahead, the acceptance tests and first-of-a-kind assembly are teaching us a
lot about the magnet quality and possible improvements for future tokamaks.

The webinar will summarise the present status of méhufacturing and assembly. Then | will chose 3 areas, critical to

magnet and tokamak performance, to describe in more detail

1. Development of Nb3Sn strands for fusion applications started in the 1980s and the selection of the material for the
Toroidal and Central Solenoid Coils in the first phase of ITER 1988-1991 was a key driver of the overall tokamak
parameters. The development, qualification and procurement, both before and after the decision to use it, gives us an
unusual opportunity to look at the implementation of a novel technology in its entirety, with the expected and
unexpected problems we encountered and how they were solved—or tolerated.

2. High voltage insulation in superconducting magnets is a frequently-overlooked area that demands many new
technologies. It is the area in the ITER magnets that has created the most quality issues on magnet acceptance and is
clearly an area where more engineering attention is required.

3. The need for improvements in overall integration of the magnets into the tokamak, and in particular maintainability
and repairability, is being demonstrated as we assemble components into the cryostat. The assembly is proceeding

well in terms of quality but at the same time, the complexity shows that for a nuclear power plant, we need
Improvements.




Drivers for the Future After ITER

J Progress in magnetic fusion plasma confinement: SIZE

d Progress in HTS: SC TECHNOLOGY

< Experience i nuclear tokamak construction: ENGINEERING INTEGRATION
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Overview of ITER and the Magnets

Status of ITER Magnet Manufacture and Assembly

- ITER Site
J ITER Tokamak and Manufacturing
] Transport

- On site Assembly




The magnets and the feeder system

Manufactured from niobium-tin
(Nb3Sn) or niobium-titanium
(Nb-Ti), the magnets become
superconducting when cooled
with supercritical helium in the

range of 4 K (- 269 °C).

10,000 tons of magnets, with a
combined stored magnetic
energy of 51 Gigajoules (GJ),
produce the magnetic fields
that initiates, confines, shapes
and controls the ITER plasma.




Main Manufacturing Sharing
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Manufacturing Off- and On- site

Overview on deliveries

2 CS modules and the majority of the CS structures
are on site

2 PF coils have been installed, 2 are at FAT stage and 2
are in manufacturing

10 TF coils are on site, 2 are in the process of
installation. 5 are in the final stages of manufacturing

6 Correction coils (the BCC) are on site, 2 have been

installed. 6 others (the TCC) are in the final stages of
manufacturing and 6 (the SCC) are in manufacturing

TF Coil Status, Nov 2021
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Some particular experiences during the magnet manufacturing

- TF with radial plates and wind-react-insulate and external case (QST & F4E)
- CS with hexapancakes and wind-react-insulate (US-IPO)

- Huge PF coils (F4E, ASIPP & Efremov)

All worked well despite many doubts and arguments before we started




On site Assembly
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Picture of in-cryostat changes over 15 months

Components are in ‘parked’ position until TF installed but we can already see the congestion
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Focus on 3 Specific Issues where ITER Experience may
be Relevant for DEMO

- Superconductors
- High Voltage Insulation
- Repair, Maintenance and System Integration




ITER Conductors

ITER conductors were always considered from the basis of 3 potential options
= NbTisuperfluid

= NDbT]

= Nb3Sn

But within these options there were many concepts for integrating the superconducting
material into a conductor and then the conductor into a coil.

NbTi superfluid was soon eliminated due to the likely thermal loads and voltage restrictions (of
He baths)

To achieve compact machine, only option was Nb3Sn. In 1988 & 1993, far from being an
industrial product. But ‘compact’ machine perceived as low cost so Nb3Sn chosen

Internally cooled conductors with solid insulation systems soon became a baseline
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ITER Insulation System

What is an insulation system?

In a superconducting fusion magnet system there are typically 2 systems, High Voltage (HV) and Ultra Low Voltage (UZV)

has at least 7 components which have to be integrated (this is often forgotten.....at bottom level, something like
50% of ITER insulation problems have been caused by failure to consider ALL the integration issues)

Bulk within magnet (usually VPI)

Bulk on feeders

Locally applied by hand (outside VPl mold)
Instrumentation
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Overall Conclusions

» ITER sc base technologies (conductor, insulation, winding, structure) offer many good qualified
building blocks, not only for ITER-like machines

» Engineering integration needs improvement (simplification, selection of fewer building
blocks!) and in some areas (voltage, tolerances) we need to consider reducing requirements.
Minor reductions could bring large advantages in manufacturing, reliability and integration!

» ITER development experiences have improved engineering maturity of LTS superconductors
and High Voltage technologies but there is more to do if new technologies like HTS are used
for DEMO...and ITER took 20 years to bring LTS to maturity. Lessons to be learned for HTS!

» ITER magnet engineering concepts/solutions need improvement for DEMO (feeders, wiring,
access, repair, reliability), with an engineering priority in the base ex-vessel machine as the

tokamak design driver. ITER has led with many technologies, now we need to improve their
integration. This applies, ITER like or not!
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