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Abstract

The standard model of particle physics is remarkably successful because it is consistent with (almost) all

experimental results. However, it fails to explain dark matter, dark energy and the imbalance between matter

and antimatter in the Universe. Because discrepancies between standard-model predictions and experimental

observations may provide evidence of new physics, an accurate evaluation of these predictions requires highly

precise values of the fundamental physical constants. Among them, the fine-structure constant α is of

particular importance because it sets the strength of the electromagnetic interaction between light and

charged elementary particles, such as the electron and the muon. Here we use matter-wave interferometry to

measure the recoil velocity of a rubidium atom that absorbs a photon, and determine the fine-structure

constant α  = 137.035999206(11) with a relative accuracy of 81 parts per trillion. The accuracy of eleven digits

in α leads to an electron g factor —the most precise prediction of the standard model—that has a greatly

reduced uncertainty. Our value of the fine-structure constant differs by more than 5 standard deviations from

the best available result from caesium recoil measurements . Our result modifies the constraints on possible

candidate dark-matter particles proposed to explain the anomalous decays of excited states of Be nuclei  and

paves the way for testing the discrepancy observed in the magnetic moment anomaly of the muon  in the

electron sector .
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Main

The fine-structure constant α is the pillar of our system of fundamental constants. As the measure of the

strength of the electromagnetic interaction in the low-energy limit, it has been measured using diverse

physical phenomena: the quantum Hall effect, the Josephson effect, the atomic fine structure, atomic recoils

and the electron magnetic moment anomaly . Comparison of results across sub-fields of physics is a powerful

test of the consistency between theory and experiment. In particular, the fine-structure constant is a crucial

parameter for testing quantum electrodynamics (QED) and the standard model. This test relies on the

comparison between the measured value of the electron gyromagnetic anomaly a  = (g  − 2)/2 (where g  is the

electron g factor) and its theoretical value. The standard-model prediction a ,  is dominated by the QED term

given by a perturbation series of α/π, and contains additional contributions from hadronic and weak

interactions. Numerical and analytical evaluations of the coefficients of the QED series are firmly established

up to the eighth order, and the accuracy of the tenth order has been improved over the past years .

Assuming that the prediction of the standard model is correct, comparison of the theory with the most

accurate measurement of the electron magnetic moment  leads to a value of the fine-structure constant with a

relative accuracy of 2.4 × 10  dominated by experimental precision  (see Fig. 1).

Fig. 1: Precision measurements of the fine-structure constant.

Comparison of most precise determinations of the fine-structure constant so far. The red points are from g  − 2

measurements and QED calculations, and the green and blue points are obtained from measurements of caesium and

rubidium atomic recoils, respectively. Errors bars correspond to ±1σ uncertainty. Previous data are from ref. 

(Washington 1987), ref.  (Stanford 2002), ref.  (LKB 2011), ref.  (Harvard 2008), ref.  (RIKEN 2019) and ref.  (Berkeley

2018). Inset, magnification of the most accurate values of the fine-structure constant.
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From a different point of view, to test the prediction of the standard model, we need independent

measurements of α with a similar precision to evaluate a , . The most successful independent approach is

based on the measurement of the recoil velocity (v  = ħk/m) of an atom of mass m that absorbs a photon of

momentum ħk (refs. ). Here ħ is the reduced Planck constant (ħ = h/(2π)) and k = 2π/λ is the photon wave

vector, where λ is the laser wavelength. Such a measurement yields the ratio h/m and then α via the relation

The Rydberg constant R  is determined from hydrogen spectroscopy with an accuracy of 1.9 parts per trillion

(ppt; https://pml.nist.gov/cuu/Constants/). The atom-to-electron mass ratio m/m  is obtained from the ratio of

the relative atomic mass of the atom A (m) (known at 69 ppt for rubidium ) and the relative atomic mass of

the electron A (m ) (known at 30 ppt) . The speed of light in vacuum, c, has a fixed value.

Here, we present a measurement of the recoil velocity on rubidium atoms. We measured

h/m( Rb) = 4.59135925890(65) × 10  m  s . In the international system of units adopted in 2019, in which h

has a fixed value, we obtain m( Rb) = 1.44316089776(21) × 10  kg. This is the most accurate atomic mass

measurement so far, to our knowledge. This results leads to a fine-structure constant α of

The uncertainty contribution from the ratio h/m( Rb) is 2.4 × 10  (statistical) and 6.8 × 10  (systematic).

Our result improves the accuracy on α by a factor of 2.5 over the previous caesium recoil measurement  but,

most notably, it reveals a 5.4σ difference from this latest measurement.

We built a dedicated experimental setup and implemented robust methods to control systematic effects. By

accelerating atoms up to 6 m s  in 6 ms and using typical two-photon Raman transitions as beam splitters for

the matter waves, we obtained a relative sensitivity on the recoil velocity of 0.6 ppb in 1 h of integration

(0.3 ppb on α). This sensitivity is more than three times better than that obtained using the best atom

interferometer based on multi-photon beam splitters , although the latter technique is expected to provide a

substantial gain in sensitivity with respect to Raman transitions .

The unprecedented sensitivity of our atom interferometer enables us to experimentally evaluate and mitigate

several systematic biases. We recorded data with different experimental parameters, reinforcing the overall

confidence of our error budget. We also implemented a Monte Carlo simulation that includes both the

Ramsey–Bordé atom interferometer and the Bloch oscillations process. This code models precisely the

underlying physics of our interferometer and provides an accurate evaluation of systematic effects, consistent

with experimental results.

Experiment

Our experimental method is illustrated in Fig. 2. The basic tools of our experiment are Bloch oscillations in an

accelerated optical lattice, which enable the coherent transfer of a precise number of photon momenta to the

atoms (typically 1,000ħk), and a matter-wave interferometer that measures the phase shift due to the change

in velocity of the atoms. As in the optical domain, atom interferometry needs tools to split and recombine

atomic wave packets; this is accomplished by a sequence of light pulses. The probability of detecting atoms in a

given internal state at the output of the interferometer is a sinusoidal function of the accumulated phase

difference along the two paths. Thus, the measurement of atomic populations enables the evaluation of the

phase shift. Using the combination of the Ramsey–Bordé interferometer configuration and Bloch oscillations,

the phase shift is proportional to the ratio h/m (ref. ).

Fig. 2: Experimental setup.

a, Design of the vacuum chamber; the atom interferometer—a 70-cm-long magnetically shielded tube—is located in the

upper area. b, Sequence of Bloch oscillations (B.O., red) and Raman pulses (yellow) used to control the trajectory of

atoms before starting the atom interferometer. c, Atom interferometer light pulse sequence. The atomic trajectories for

upward (blue) and downward (purple) accelerations are previously calculated to mitigate the gravity gradient effect. The

separation between the two paths of each interferometer is exaggerated for clarity.
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We produce a cold rubidium sample using an optical molasses in the main chamber. Then, atoms are

transported to the interferometry area, a 70-cm-long tube surrounded by a two-layer magnetic shield. The

magnetic field is controlled to within 50 nT. To that end, we use an atomic elevator based on two Bloch

oscillation pulses (acceleration/deceleration) . These are performed using two vertical counter-propagating

laser beams, the frequency difference of which is swept to create an accelerated standing wave. Atomic

trajectories are precisely adjusted by controlling this frequency difference. Between the two Bloch oscillation

pulses of the elevator, we apply two Raman pulses to prepare atoms in a well defined atomic internal state (see

Fig. 2b). Raman transitions occur between the two hyperfine levels of the ground state of the rubidium atom

and are also implemented using two vertical counter-propagating laser beams (with wave vectors k  = −k  and

k  = k  ≈ k ). Their frequency difference ω  is controlled to compensate precisely the Doppler shift induced by

the accelerations of the atoms.

The atom interferometer is illustrated in Fig. 2c. It is implemented with two pairs of π/2 Raman pulses. Each

pulse acts as a beam splitter by transferring a momentum of 2ħk  to an atom with a probability of 50%. The first

pair creates a coherent superposition of two spatially separated wave packets in the same internal state with

the same momentum. The second pair recombines the two wave packets. Between the second and third π/2

pulses, a Bloch oscillation pulse transfers a momentum of 2N ħk  to both wave packets, where N  is the

number of Bloch oscillations. The overall phase Φ of the interferometer is given by

where T  is the time between the π/2 pulses of each pair, T is the time between the first and the third π/2 pulses,

g is the gravitational acceleration, ϕ  represents the phase corresponding to parasitic atomic level shifts and

δω  is the difference of the Raman frequencies between the first and the third π/2 pulses. ε  and ε  determine

the orientation of Raman and Bloch lasers wave vectors, respectively.

The fluorescence signal collected in the detection zone gives the number of atoms in each atomic level at the

output of the interferometer. Atomic fringes are obtained by measuring the fraction of atoms in a given

internal state for varying δω . Using a mean-square adjustment, we calculate δω , the frequency for which

Φ = 0. Gravity is cancelled between upward (ε  = 1) and downward (ε  = −1) acceleration (see Fig. 2). Constant

level shifts ϕ  are mitigated by inverting the direction of the Raman beams (ε  = ±1). The shot-to-shot

parameters of the interferometer (δω , ε , ε ) are applied randomly to avoid drifts. We record four spectra

(Fig. 3a) that yield

Fig. 3: Data analysis.

a, Typical set of four spectra recorded by inverting the directions of the Raman and Bloch beams for T  = 20 ms and

N  = 500. Each spectrum displays the variation of the relative atomic population with respect to the parameter δω . The

lines are least-squares fits used to determine the position of the central fringe displayed on the top of each spectrum. b,

Allan deviation σ  of the measurement of the fine-structure constant α at maximum sensitivity (T  = 20 ms, N  = 500) as a

function of the integration time τ. The line corresponds to \({\sigma }_{\alpha }(\tau )=3\times {10}^{-10}/\sqrt{\tau }\),

with τ expressed in hours. Error bars indicate 1σ uncertainties. c, Datasets used to determine the value of the fine-

structure constant, α. Data are obtained by changing the following experimental parameters: the pulse separation time,

T , the number of Bloch oscillations, N , and their total duration, τ . The circles and diamonds correspond to two

different laser intensities during the π/2 pulses of the interferometer. Error bars denote ±1σ and are estimated from the

standard deviation of the mean. The blue band represents the overall the ±1σ standard deviation. The reduced χ  for the

combined data is 1.4.
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Data analysis

For the conditions of Fig. 3a, the typical uncertainty on δω  is 55 mHz. This leads to a statistical uncertainty

on h/m of less than 2 ppb in 5 min. The behaviour of the Allan deviation calculated with a set of h/m

measurements over 56 h (Fig. 3b) shows that the data are independent (no correlations or long-term drift). It

also indicates that the sensitivity of our setup on α is 8 × 10  in 14 h.

Table 1 presents our error budget. Several systematic effects identified in our previous measurement  have

been reduced by at least one order of magnitude. By controlling the experimental parameters of the atomic

elevator, we are able to adjust precisely the altitude of atomic trajectories within 100 µm in such way that the

gravity gradient cancels out between the configurations ε  = 1 and ε  = −1 (see Fig. 2c). The effect of Earth’s

rotation is suppressed by continuously rotating one of the Raman beams during the interferometric pulse

sequence . The long-term drift of the beam alignment is corrected with an accuracy better than 4 µrad every

45 min by controlling the retro-reflection of the laser beams via a single-mode optical fibre. Our lasers are

locked on a stabilized Fabry–Pérot cavity and their frequencies are regularly measured using a frequency comb

with an accuracy of less than 4 kHz. The low density of our atomic sample implies a reduction of the effects of

the refraction index and atom–atom interaction  to less than 1 ppt. Effects related to the geometrical

parameters of the laser beams (Gouy phase and wave front curvature) are mitigated by using a 4.9-mm-waist

beam passing through an apodizing filter and by adjusting the curvature with a shearing interferometer.

Table 1 Error budget on α

Full size table

Among the recently identified systematic effects, the most subtle one is related to correlations between the

efficiency of the Bloch oscillations and short-scale spatial fluctuations in laser intensity. This effect raises the

question of how to calculate the photon momentum in a distorted optical field. Relying on our previous

work , we reduce the contribution of this effect to the error budget to less than 0.02 ppb. Because of the

expansion of the atomic cloud, there is a residual phase shift that is due to the variation of the intensity

perceived by the atoms. This phase shift depends on the velocity distribution . We implement a method to

compensate for the mean intensity variation and use a Monte Carlo simulation to evaluate the residual bias due

to this Raman phase shift.

During the interferometer sequence, we apply a frequency ramp to compensate the Doppler shift induced by

gravity. Nonlinearity in the delay of the optical phase-lock loop induces a residual phase shift that is measured

and corrected for each spectrum. These systematic effects were not considered in our previous

measurement  (see Fig. 1), which could explain the 2.4σ discrepancy between that measurement and the

present one. Unfortunately, we do not have available data to evaluate retrospectively the contributions of the

phase shift in the Raman phase-lock loop and of short-scale fluctuations in the laser intensity to the 2011

measurement. Thus, we cannot firmly state that these two effects are the cause of the 2.4σ discrepancy

between our two measurements.

Overall systematic errors contribute an uncertainty of 6.8 × 10 . Figure 3c shows the data used for the

determination of α. Each point represents about 10 h of data. We took advantage of the sensitivity and

reproducibility of our setup to study systematic effects by varying the experimental parameters (such as pulse-

separation time, number of Bloch oscillations, duration of Bloch pulse, laser intensity and atomic trajectories).

In parallel, we performed theoretical modelling and numerical simulations to interpret the experimental

observations. The measurement campaign lasted one year and ended when consistent values were obtained

for the different configurations.

Using our measurement of the fine-structure constant, the standard-model prediction of the anomalous

magnetic moment of the electron becomes

The relative uncertainty on g  is below 0.1 ppt, which is the most accurate prediction of the standard model.

Comparison with the direct experimental measurement a ,  (ref. ) gives

δa  = a − a (α ) = (4.8 ± 3.0) × 10  (+1.6σ), whereas comparison with caesium recoil measurements

gives δ′a  = a  − a (α ) = (−8.8 ± 3.6) × 10  (−2.4σ). The uncertainty on δa  is dominated by a .

Discussion

Our measurement sets additional limits on theories beyond the standard model that lead to a contribution to

a . Using a Bayes method , our result implies that for a theory with positive δa , we can reject δa  > 9.8 × 10

with a 95% confidence level, and for a theory with negative δa , we can reject δa  < −3.4 × 10  with a 95%

confidence level.

For example, our result modifies the limits on a possible substructure within the electron. If the electron is

composed of constituent particles of mass m* bound together by some unknown attraction, its natural size

should be R = ħ/(m*c) and its magnetic moment would be modified by δa  ≈ m /m* using the simplest analysis.

According to the chirally invariant model , our result excludes regions with m* < 520 GeV/c  or R > 4 × 10  m

with a confidence level of 95%. These are stringent limits set by low-energy experiments, although they are not

yet at the limits of the Large Electron–Positron collider (the largest electron–positron collider available

today) .

Moreover, our result sets the stage for testing whether the persistent discrepancy of 3.6σ between the

experimental value  and the standard-model prediction of the magnetic moment of the muon  (a ) exists

for electrons. If this discrepancy (δa ) is the signature of new physics, similar effects could be observable for

electrons. Using naive scaling, the effects on the electron would be of the order of (m /m ) δa  (ref. ), where

m  is the mass of the muon. Figure 4a summarizes the overall contributions of experiments involved in the

determination of δa . We also include the largest theoretical contributions from the fifth order of the QED

series and the hadronic term. The dominant contribution comes from the direct measurement of the electron

moment anomaly, a , . For the first time, the contribution of the recoil measurement (h/m) is at the level of

(m /m ) δa  ≈ 6.5 × 10 , the value of δa  deduced from the naive scaling (horizontal green bar). In the next

years, improvement of one order of magnitude is expected for the accuracy of the measurement of a ,  (ref.

); it will then be possible to probe physics beyond the standard model with comparable information from

both the electron and muon.

Fig. 4: Impact on the test of the standard-model prediction of a  and limits on hypothetical X boson.

a, Summary of contributions to the relative uncertainty on δa . The horizontal green line corresponds to the δa  value

obtained by taking into account the muon magnetic moment discrepancy and using a naive scaling model. Previous data

from ref.  (Harvard 2008), ref.  (LKB 2011), ref.  (Berkeley 2018), ref.  (Atomic Mass Evaluation, AME 2016), ref. 

(Max-Planck-Institut für Kernphysik, MPIK 2014) and ref.  (RIKEN 2019). Also shown are the 10th-order and hadronic

contributions in the calculation of the electron moment anomaly. b, Exclusion area in (ε, m ) space for the X boson. The

grey, blue and light purple regions are ruled out by the E141 , NA64  and BaBar  experiments, respectively. A test

based on the magnetic moment of the electron rules out the orange region when using the Berkeley measurement  and

the purple region when using the present result. Disregarding the Berkeley measurement, the remaining allowed range

at 16.7 MeV is depicted by the thick red line. The zone favoured by δa  > 0, as deduced from this work, is shown by grey

dots.
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Finally, the anomaly reported in the angular distribution of positron–electron pairs (e e ) produced in Be

nuclear transitions  could be explained by the emission of a hypothetical protophobic gauge boson X with a

mass of 16.7 MeV followed by the decay X → e e  (ref. ). The X boson is parameterized by a mixing strength ε

with electrons and a non-zero mass m . Figure 4b presents the exclusion space for those parameters. At

16.7 MeV, the upper limit of ε is set by the g  − 2 value of the electron and its lower limit by electron beam dump

experiments (E141  and NA64  collaborations). Recently, new results from the NA64 collaboration

excluded ε values lower than 6.8 × 10 . Because vector coupling implies δa  > 0, the result from a caesium

recoil experiment imposes strong constraints on ε; combined with the NA64 result, it rejects pure vector

coupling of X(16.7 MeV) at 90% confidence level. By contrast, our measurement of α gives δa  > 0 and favours

pure vector coupling with ε = (8 ± 3) × 10 , which could explain the Be anomaly.

Methods

Experimental setup
The design of the science chamber is shown on Fig. 2a. A three-dimensional magneto-optical trap (MOT) is

loaded by a slow atomic beam generated in a two-dimensional MOT. An optical molasses is used to further cool

down atoms to a temperature of 4 µK. The temperature of the atomic cloud is measured using Doppler-

sensitive Raman transitions.

After being released from the optical molasses (t = 0), atoms are transported to a separate chamber in which

the vacuum is controlled at the level of few 10  mbar. The chamber consists of a long tube placed 50 cm above

the centre of the MOT. One main difference with our previous setup  is that the atom interferometer is

realized in this separate long tube, where the magnetic field is precisely controlled using a uniformly wound

solenoid shielded by two layers of µ-metal.

Lasers for the Raman transitions are produced using second-harmonic generation from 1.56-µm lasers. These

two lasers are phase-locked, and the scheme used to control the frequency difference between them during the

interferometer sequence is shown in Extended Data Fig. 3a. The power used to drive Raman transitions is at

maximum 70 mW per beam. The lasers are detuned with respect to the one-photon transition (Rb D2 line) by

about 60 GHz.

Laser beams for the Bloch oscillations are produced from a 1.56-µm fibre laser that is split into two. Each beam

seeds an optical system (µQuans) in which it passes through an acousto-optic modulator to control the laser

frequency, is then amplified and passes through a periodically poled lithium niobate crystal for second-

harmonic generation (about 800 mW at 780 nm). The two Bloch beams are filtered through a Rb vapour cell to

reduce the resonant component of the amplified spontaneous emission of the amplifiers . The total power is

400 mW for a peak intensity of 530 mW cm . The laser is blue-detuned by 40 GHz from Rb D2 line.

The two Raman beams have linear and orthogonal polarizations. Together with one of the Bloch beams, they

are transported with the same single-mode polarization-maintaining fibre at the top of the cell and pointing

downwards (Extended Data Fig. 1a). A polarizing beam splitter is placed at the bottom of the vacuum cell. It

transmits one of the Raman beams, which is then retro-reflected on a horizontal mirror placed on a vibration

isolation table to achieve the counter-propagating configuration. The second Raman beam and the Bloch

beam are rejected by the polarizing beam splitter. The inversion of the Raman effective wave vector is

performed by rotating the polarization of the Raman beams by 90° before the fibre. The second Bloch beam is

transported by an independent single-mode polarization-maintaining fibre at the bottom of the cell and points

upwards. The waist of the beams at the output of the collimators is 4.9 mm. An apodizing filter is placed after

each collimator .

Experimental sequence
To transport atoms in the interferometry area, we use an atomic elevator based on two Bloch oscillation pulses

(acceleration/deceleration) . By adjusting the parameters of the elevator (number of Bloch oscillations and

delays), we can precisely choose the initial position z  and velocity v  of the cloud at the start of the

interferometer t . Between the two Bloch oscillations pulses of the elevator, we apply two Raman π pulses

with a blow-away pulse in between. With this sequence, atoms are prepared in the magnetically insensitive

state, and by controlling the parameters of the first Raman π pulse (intensity and duration) one can set the

width of the vertical velocity distribution of the atomic cloud. Using a pulse duration of 189 µs, we obtain a

velocity distribution with a full-width at half-maximum of 1.7 mm s . After the preparation sequence, 500,000

atoms form the cloud.

The interferometer consists of four π/2 Raman pulses of the same duration arranged in two identical Ramsey

sequences (delay T ) separated by a duration T. The Bloch oscillation pulse is applied between the second and

third Raman pulses (see Fig. 2c or Extended Data Fig. 1c for definitions of the pulse timing notation). To

perform Bloch oscillations, we load the atoms at time t  in an optical lattice by adiabatically ramping up the

laser intensity for τ  = 500 µs. Then, we implement N  oscillations by accelerating the lattice during time τ ,

which is proportional to N  and in our experiment corresponds to τ  = 12 µs per oscillation unless otherwise

specified. Finally, the lattice is adiabatically ramped down for another 500 µs.

The detection scheme (Extended Data Fig. 1b) is composed of three horizontal retro-reflected light sheets

through which the atoms fall successively. The first light sheet is resonant with atoms in the state |F = 2⟩ that

emit fluorescence photons collected on a large-area photo-diode (F, hyperfine quantum number). A cache

placed at the bottom of the light sheet blocks the retro-reflection, leading to pushing the detected atoms away

from the detection system. The remaining atoms in |F = 1⟩ pass through a light sheet that repumps them in |F =

2⟩, and they are subsequently detected in a third light sheet similar to the first one. The relative population of

atoms in each state is then obtained from the collected fluorescence signals.

Theoretical phase shift at the output of the interferometer
To maintain the resonance condition of the Raman transitions, the frequency difference ω  between the lasers

that drive them is carefully adjusted. In addition to the frequency difference shift δω  between the first and

third π/2 pulses, we apply during the Ramsey sequences a ramp at rate β to compensate for gravity. Thus, the

effective wave vector of Raman transitions varies along the interferometer, which can induce a bias .

By treating this effect as a perturbation in the Lagrangian formalism , we obtain a modified version of

equation (2):

where k  is defined as the effective wave vector when the laser frequency difference is set to address atoms at

zero velocity. This formula must be used to compute h/m from the central frequency determinations of the

four spectra. However, because the additional term (second and third lines in equation (4)) is independent of

the direction of the Raman beams, the determination of h/m from equation (3) remains valid, provided that the

value of the Raman wave vector corresponds to the one resulting from addressing atoms at zero velocity.

Because we use this value, there is no correction associated to this effect.

Evaluation of uncertainty budgets
Thanks to the high sensitivity of our atom interferometer, a wide range of systematic effects was investigated

and evaluated experimentally. Furthermore, we performed the measurements of h/m with various

experimental parameters (N , T , τ , Raman laser intensity). The parameters are listed in Extended Data Table

1.

Given that many systematic effects depend on the position or velocity of the atoms, we implemented a Monte

Carlo simulation of the experiment to calculate such effects precisely. The trajectories of the atoms during the

measurement sequence were precisely controlled by means of the atomic elevator. The Monte Carlo

simulation was based on the calculation of atomic trajectories using the real-time sequence of the experiment.

Quantities depending on the trajectory of the atoms (such as the contrast of Rabi oscillations or the efficiency

of Bloch oscillations) were calculated and compared with experimental results to confirm the validity of the

model.
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accuracy on α by a factor of 2.5 over the previous caesium recoil meas-
urement3 but, most notably, it reveals a 5.4σ difference from this latest 
measurement.

We built a dedicated experimental setup and implemented robust 
methods to control systematic effects. By accelerating atoms up to 
6 m s−1 in 6 ms and using typical two-photon Raman transitions as beam 
splitters for the matter waves, we obtained a relative sensitivity on 
the recoil velocity of 0.6 ppb in 1 h of integration (0.3 ppb on α). This 
sensitivity is more than three times better than that obtained using 
the best atom interferometer based on multi-photon beam splitters3, 
although the latter technique is expected to provide a substantial gain 
in sensitivity with respect to Raman transitions15,16.

The unprecedented sensitivity of our atom interferometer enables us 
to experimentally evaluate and mitigate several systematic biases. We 
recorded data with different experimental parameters, reinforcing the 
overall confidence of our error budget. We also implemented a Monte 
Carlo simulation that includes both the Ramsey–Bordé atom interfer-
ometer and the Bloch oscillations process. This code models precisely 
the underlying physics of our interferometer and provides an accurate 
evaluation of systematic effects, consistent with experimental results.

Experiment
Our experimental method is illustrated in Fig. 2. The basic tools of our 
experiment are Bloch oscillations in an accelerated optical lattice, 
which enable the coherent transfer of a precise number of photon 
momenta to the atoms (typically 1,000ħk), and a matter-wave inter-
ferometer that measures the phase shift due to the change in velocity 
of the atoms. As in the optical domain, atom interferometry needs 
tools to split and recombine atomic wave packets; this is accomplished 
by a sequence of light pulses. The probability of detecting atoms in a 
given internal state at the output of the interferometer is a sinusoidal 
function of the accumulated phase difference along the two paths. 
Thus, the measurement of atomic populations enables the evalua-
tion of the phase shift. Using the combination of the Ramsey–Bordé 
interferometer configuration and Bloch oscillations, the phase shift 
is proportional to the ratio h/m (ref. 17).

We produce a cold rubidium sample using an optical molasses in 
the main chamber. Then, atoms are transported to the interferom-
etry area, a 70-cm-long tube surrounded by a two-layer magnetic 

shield. The magnetic field is controlled to within 50 nT. To that end, 
we use an atomic elevator based on two Bloch oscillation pulses 
(acceleration/deceleration)17. These are performed using two vertical 
counter-propagating laser beams, the frequency difference of which is 
swept to create an accelerated standing wave. Atomic trajectories are 
precisely adjusted by controlling this frequency difference. Between 
the two Bloch oscillation pulses of the elevator, we apply two Raman 
pulses to prepare atoms in a well defined atomic internal state (see 
Fig. 2b). Raman transitions occur between the two hyperfine levels 
of the ground state of the rubidium atom and are also implemented 
using two vertical counter-propagating laser beams (with wave vectors 
k1 = −k2 and kR = k1 ≈ k2). Their frequency difference ωR is controlled to 
compensate precisely the Doppler shift induced by the accelerations 
of the atoms.

The atom interferometer is illustrated in Fig. 2c. It is implemented 
with two pairs of π/2 Raman pulses. Each pulse acts as a beam splitter by 
transferring a momentum of 2ħkR to an atom with a probability of 50%. 
The first pair creates a coherent superposition of two spatially sepa-
rated wave packets in the same internal state with the same momentum. 
The second pair recombines the two wave packets. Between the second 
and third π/2 pulses, a Bloch oscillation pulse transfers a momentum 
of 2NBħkB to both wave packets, where NB is the number of Bloch oscil-
lations. The overall phase Φ of the interferometer is given by

Φ T ε k ε
N ħk

m
gT δω φ= 2

2
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B B
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where TR is the time between the π/2 pulses of each pair, T is the time 
between the first and the third π/2 pulses, g is the gravitational accelera-
tion, φLS represents the phase corresponding to parasitic atomic level 
shifts and δωR is the difference of the Raman frequencies between the 
first and the third π/2 pulses. εR and εB determine the orientation of 
Raman and Bloch lasers wave vectors, respectively.

The fluorescence signal collected in the detection zone gives the 
number of atoms in each atomic level at the output of the interferom-
eter. Atomic fringes are obtained by measuring the fraction of atoms in 
a given internal state for varying δωR. Using a mean-square adjustment, 
we calculate δωR,0, the frequency for which Φ = 0. Gravity is cancelled 
between upward (εB = 1) and downward (εB = −1) acceleration (see Fig. 2). 
Constant level shifts φLS are mitigated by inverting the direction of the 
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accuracy on α by a factor of 2.5 over the previous caesium recoil meas-
urement3 but, most notably, it reveals a 5.4σ difference from this latest 
measurement.

We built a dedicated experimental setup and implemented robust 
methods to control systematic effects. By accelerating atoms up to 
6 m s−1 in 6 ms and using typical two-photon Raman transitions as beam 
splitters for the matter waves, we obtained a relative sensitivity on 
the recoil velocity of 0.6 ppb in 1 h of integration (0.3 ppb on α). This 
sensitivity is more than three times better than that obtained using 
the best atom interferometer based on multi-photon beam splitters3, 
although the latter technique is expected to provide a substantial gain 
in sensitivity with respect to Raman transitions15,16.

The unprecedented sensitivity of our atom interferometer enables us 
to experimentally evaluate and mitigate several systematic biases. We 
recorded data with different experimental parameters, reinforcing the 
overall confidence of our error budget. We also implemented a Monte 
Carlo simulation that includes both the Ramsey–Bordé atom interfer-
ometer and the Bloch oscillations process. This code models precisely 
the underlying physics of our interferometer and provides an accurate 
evaluation of systematic effects, consistent with experimental results.

Experiment
Our experimental method is illustrated in Fig. 2. The basic tools of our 
experiment are Bloch oscillations in an accelerated optical lattice, 
which enable the coherent transfer of a precise number of photon 
momenta to the atoms (typically 1,000ħk), and a matter-wave inter-
ferometer that measures the phase shift due to the change in velocity 
of the atoms. As in the optical domain, atom interferometry needs 
tools to split and recombine atomic wave packets; this is accomplished 
by a sequence of light pulses. The probability of detecting atoms in a 
given internal state at the output of the interferometer is a sinusoidal 
function of the accumulated phase difference along the two paths. 
Thus, the measurement of atomic populations enables the evalua-
tion of the phase shift. Using the combination of the Ramsey–Bordé 
interferometer configuration and Bloch oscillations, the phase shift 
is proportional to the ratio h/m (ref. 17).

We produce a cold rubidium sample using an optical molasses in 
the main chamber. Then, atoms are transported to the interferom-
etry area, a 70-cm-long tube surrounded by a two-layer magnetic 

shield. The magnetic field is controlled to within 50 nT. To that end, 
we use an atomic elevator based on two Bloch oscillation pulses 
(acceleration/deceleration)17. These are performed using two vertical 
counter-propagating laser beams, the frequency difference of which is 
swept to create an accelerated standing wave. Atomic trajectories are 
precisely adjusted by controlling this frequency difference. Between 
the two Bloch oscillation pulses of the elevator, we apply two Raman 
pulses to prepare atoms in a well defined atomic internal state (see 
Fig. 2b). Raman transitions occur between the two hyperfine levels 
of the ground state of the rubidium atom and are also implemented 
using two vertical counter-propagating laser beams (with wave vectors 
k1 = −k2 and kR = k1 ≈ k2). Their frequency difference ωR is controlled to 
compensate precisely the Doppler shift induced by the accelerations 
of the atoms.

The atom interferometer is illustrated in Fig. 2c. It is implemented 
with two pairs of π/2 Raman pulses. Each pulse acts as a beam splitter by 
transferring a momentum of 2ħkR to an atom with a probability of 50%. 
The first pair creates a coherent superposition of two spatially sepa-
rated wave packets in the same internal state with the same momentum. 
The second pair recombines the two wave packets. Between the second 
and third π/2 pulses, a Bloch oscillation pulse transfers a momentum 
of 2NBħkB to both wave packets, where NB is the number of Bloch oscil-
lations. The overall phase Φ of the interferometer is given by
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where TR is the time between the π/2 pulses of each pair, T is the time 
between the first and the third π/2 pulses, g is the gravitational accelera-
tion, φLS represents the phase corresponding to parasitic atomic level 
shifts and δωR is the difference of the Raman frequencies between the 
first and the third π/2 pulses. εR and εB determine the orientation of 
Raman and Bloch lasers wave vectors, respectively.

The fluorescence signal collected in the detection zone gives the 
number of atoms in each atomic level at the output of the interferom-
eter. Atomic fringes are obtained by measuring the fraction of atoms in 
a given internal state for varying δωR. Using a mean-square adjustment, 
we calculate δωR,0, the frequency for which Φ = 0. Gravity is cancelled 
between upward (εB = 1) and downward (εB = −1) acceleration (see Fig. 2). 
Constant level shifts φLS are mitigated by inverting the direction of the 
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Plan of my talk

• What is the fine-structure constant α?

• Atom interferometers and derived α
Berkeley Cs  and  LKB-in-Paris Rb

• Electron g-2 and derived  α
Possible improvements in experiment and theory

• Comparison of α and electron g-2



The fine-structure constant α =1/137.03 …

Explanation   
strength of electro-magnetic interaction
a dimensionless constant
named after the fine structure of the hydrogen atom spectral lines  

by  A. Sommerfeld in 1916

The definition in SI units:           
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1 まえがき
Peskin ２章で用いた鞍点法による積分の評価方法について、簡単にまとめます。（数学

的厳密さには欠けています。）
量子化には交換関係に基づく正準量子化のほかに、経路積分による量子化という手法が

あります。経路積分量子化で、摂動論では拾い上げることができない非摂動論的な効果を
見る近似法に、鞍点法を用いることがあります。量子力学での非摂動論的効果で最も知ら
れているのはトンネル効果です。指数減衰する透過確率は摂動計算では再現できず、WKB

近似（半古典近似）などで評価します。WKB近似は、さんすうとしては鞍点法に他なり
ません。量子場の理論ですと、!が 0での極限での Coleman-Weinbergの有効ポテンシャ
ルの導出、２次元量子重量理論での物質場の個数が負の無限大での極限などの評価などで
使われました。

2 実関数
積分　

I(k) =

∫
dxekf(x)

を考える。
f(x)が x = x0で極大値を持つならば、f ′(x0) = 0, f ′′(x0) < 0 であり

I(k) =

∫
dxek{f(x0)− (x−x0)

2

2 |f ′′(x0)|+O((x−x0)3)}

1

鞍点法メモ
仁尾　真紀子

このテキストは非公開です!

Oct. 13, 2020

α =
1

4πε0

e2

!c

e

! = h/(2π)

c

ε0

Old SI before 2019 New SI after 2019

e elementary charge derived 1.602 176 634× 10−19C exact

c sleep of light in vacuum 299 792 458m/s exact exact, unchanged

ε0 electric constant 1/(µ0c2), µ0 = 4π × 10−7N/A2 derived

h = 2π! Planck constant derived 6.626 070 15× 10−34J · s
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determina2on of α from the H-atom

• Binding energy of Bohr Model

Rydberg constant

• Energy or frequency can be precisely determined
• To obtain α,  need to know the precise value of  the 

electron-mass me or me /h
• precise value of α cannot  be directly obtained  from 

the atom spectroscopy only
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Quantum Hall Effect 
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Measurements of the Hall voltage of a two-di '

1 I
~ ] 0 ~ ~

wo- imensiona electron gas, realized with a
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PACS numbers: 73.25.+i, 06.20.Jr, 72.20.My, 73.40.Qv
In this paper we report a new, potentially high-

accuracy method for determining the fine-struc-
ture constant, n. The new approach is based on
the fact that the degenerate electron gas in the in-
version layer of a MOSFET (metal-oxide-semi-
conductor field-effect transistor) is fully cluan-
tized when the transistor is operated at helium
temperatures and in a strong magnetic field of
order 15 T.' The inset in Fig. 1 shows a schem-
atic diagram of a typical MOSFET device used in
this work. The electric field perpendicular to the
surface (gate field) produces subbands for the mo-
tion normal to the semiconductor-oxide interface,
and the magnetic field produces Landau quantiza-
tion of motion parallel to the interface. The den-
sity of states D(E) consists of broadened 5 func-
tions'; minimal overlap is achieved if the mag-
netic field is sufficiently high. The number of
states, NL, within each Landau level is given by
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where we exclude the spin and valley degenera-
cies. If the density of states at the Fermi ener-
gy, N(EF), is zero, an inversion layer carrier
cannot be scattered. , and the center of the cyclo-
tron orbit drifts in the direction perpendicular to
the electric and magnetic field. If N(FF) is finite
but small, an arbitrarily small rate of scattering
cannot occur and localization produced b th l
lxf t

y e ong
e arne is the same as a zero scattering rate,

i.e., the same absence of current-carrying states
occurs. ' Thus, when the Fermi level is between
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unction of the gate voltage V at T = 1.5 K. The con-
stant magnetic field {B) is 18 T and the source drain
current, l, is 1 A.p, . The inset shows a top view of the
device with a length of I =400 pm, a width of 8' =50 pm,
and a distance between the potential probes f I
p,m.
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Experimental discovery of Integer Quantum Hall effect
The authors seem happy with the nice value of α 



Quantum Hall resistance RK
von Klitzing constant

In old SI,             are exact.

This method is no longer available.
is exact and the standard of resistance in new SI.
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invalidate both the relation N =Nz and Eq. (4).
However, the experimental results strongly sug-
gest that such carriers do not invalidate Eq. (4).
At present there is both theoretical and experi-
mental investigation of this type of localiza-
tion.""" Ando' has suggested that the electrons
in impurity bands, arising from short range scat-
terers, do not contribute to the Hall current;
whereas the electrons in the Landau level give
rise to the same Hall current as that obtained
when all the electrons are in the level and can
move freely. Clearly this process must be oc-
curing but its range of validity must be carefully
examined as an accompaniment to highly accurate
measurements of Hall resistance.
For high-precision measurements we used a

normal resistance R, in series with the device.
The voltage drop, U„across R„and the voltages
UH and Upp across and along the device was meas-
ured with a high impedance voltmeter (R &2 x10'0

400

200.

0). The resistance R, was calibrated by the Phys-
ikalisch Technische Bundesanstalt, Braunschweig,
and had a value of Rp 9999.69 0 at a temperature
of 20'C. A typical result of the measured Hall
resistance R„=UH /I =UHR, /U„and the resis-
tance, R» =U»R, /U„between the potential
probes of the device is shown in Fig. 2 (J3 =13 T,
T =1.8 K). The minimum in cr„„atV, =23.6 P
corresponds to the minimum at V~ =8.7 V in Fig.
1, because the thicknesses of the gate oxides of
these two samples differ by a factor of 3.6. Our
experimental arrangement was not sensitive
enough to measure a value of R» of less than 0.1
0 which was found in the gate-voltage region
23.40 V& V &23.80 V. The Hall resistance in this
gate voltage region had a value of 6453.3+ 0.1 Q.
This inaccuracy of + 0.1 0 was due to the limited
sensitivity of the voltmeter. We would like to
mention that most of the samples, especially de-
vices with a small length-to-width ratio, showed
a minimum in the Hall voltage as a function of V
at gate voltage close to the left side of the plateau.
In Fig. 2, this minimum is relatively shallow and
has a value of 6452.87 0 at V~ =23.30 V.
In order to demonstrate the insensitivity of the

Hall resistance on the geometry of the device,
measurements on two samples with a length-to-
width ratio of I /W=0. 65 and I/W=25, respective-
ly, are plotted in Fig. 3. The gate-voltage scale
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FIG. 2. Hall resistance RH, and device resistance,
Rpp, between the potential probes as a function of the
gate voltage ~~ in a region of gate voltage correspond-
ing to a fully occupied, lowest (n =0) Landau level. The
plateau in RH has a value of 6453.3+ 0.1 Q. The geom-
etry of the device was I =400 pm, 8'=50 pm, and L»
=130 pm; B=13T.
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FIG. 3. Hall resistance RH for two samples with dif-
ferent geometry in a gate-voltage region V~ where the
n =0 Landau level is fully occupied. The recommended
value h/4e' is given as 6453.204 &.
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1 まえがき
Peskin ２章で用いた鞍点法による積分の評価方法について、簡単にまとめます。（数学

的厳密さには欠けています。）
量子化には交換関係に基づく正準量子化のほかに、経路積分による量子化という手法が

あります。経路積分量子化で、摂動論では拾い上げることができない非摂動論的な効果を
見る近似法に、鞍点法を用いることがあります。量子力学での非摂動論的効果で最も知ら
れているのはトンネル効果です。指数減衰する透過確率は摂動計算では再現できず、WKB

近似（半古典近似）などで評価します。WKB近似は、さんすうとしては鞍点法に他なり
ません。量子場の理論ですと、!が 0での極限での Coleman-Weinbergの有効ポテンシャ
ルの導出、２次元量子重量理論での物質場の個数が負の無限大での極限などの評価などで
使われました。

2 実関数
積分　

I(k) =

∫
dxekf(x)

を考える。
f(x)が x = x0で極大値を持つならば、f ′(x0) = 0, f ′′(x0) < 0 であり

I(k) =

∫
dxek{f(x0)− (x−x0)

2

2 |f ′′(x0)|+O((x−x0)3)}

と書ける。k > 0が十分に大きいならば、指数関数の肩の第２項の寄与は第 1項にくらべ
て、急速に小さくなる。したがって、

lim
k→+∞

I(k) = ekf(x0)
∫

dxe−k(x−x0)2|f ′′(x0)|

= ekf(x0)
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Values of α in 2014

between JILA-10 and BIPM-14, UWash-00, BIPM-01,
UCI-14, and UZur-06, respectively. The weighted mean of
the 14 results is 6.674 083ð50ÞG0 [7.5 × 10−6], where
G0 ¼ 10−11 kg−1 m3 s−2. For this calculation χ2 ¼ 319.3,
pð319.3j13Þ ≈ 0, and RB ¼ 4.96. Nine data have normalized
residuals jrij > 2: JILA-10, BIPM-14, BIPM-01, NIST-82,
HUST-09, TR&D-96, LENS-14, HUST-05, and UCI-14; their
respective values are −12.5, 9.1, 5.6, −3.7, 3.3, 2.4, 2.2, 2.1,
and 2.1.
Because of their comparatively small uncertainties, there is

little impact if this calculation is repeated with just the six G

results with ur < 30 × 10−6. These are, in order of increasing
uncertainty, UWash-00, UZur-06, UCI-14, JILA-10, BIPM-
14, and HUST-09. Their weighted mean is 6.674 077ð52ÞG0

[7.8×10−6], with χ2¼258.6, pð258.6j13Þ≈0, and RB¼7.19;
their respective normalized residuals ri are 1.9, 1.4, 2.2,
−12.4, 9.1, and −3.3. The significant disagreement of the
JILA-10 and BIPM-14 results with the four other low-
uncertainty results is apparent. Additional calculations have
been carried out, for example, one in which the JILA-10,
BIPM-01, and BIPM-14 results are omitted. The weighted
mean of the remaining 11 data is 6.674 121ð57ÞG0

[8.6 × 10−6], with χ2 ¼ 49.8, pð49.8j13Þ ¼ 2.9 × 10−6, and
RB ¼ 2.2. The value of G is not significantly different
from the two other weighted-mean values and deleting the
three data increases the χ2 probability by 10 orders of
magnitude. Nevertheless, for all practical purposes it is still
very small.
In 2010 the Task Group decided to take as the recom-

mended value of G the weighted mean and its uncertainty of
the 11 values then available (essentially the first 11 values in
Tables XV and XXVII), but after multiplying the initially
assigned uncertainty of each value by the factor 14, called
the expansion factor. The number 14 was chosen so that the
smallest and largest of the 11 values differed from the
recommended value by about twice its uncertainty. This
reduced each jrij to less than 1. To achieve this level of
consistency for the 14 values now available would require an
expansion factor of about 16. After due consideration the Task
Group decided that it would be more appropriate to follow its
usual approach of treating inconsistent data, namely, to choose
an expansion factor that reduces each jrij to less than 2. It
concluded that the resulting uncertainty would better reflect
the current situation in light of the new low-uncertainty
UCI-14 result with ur ¼ 19 × 10−6, which agrees well with
the low-uncertainty UWash-00 and UZur-06 results with ur ¼
14 × 10−6 and ur ¼ 19 × 10−6, respectively. Thus based on an

FIG. 1. Values of the fine-structure constant α with ur < 10−7

inferred from the input data in Table XVIII in order of decreasing
uncertainty from top to bottom (see Table XX).

FIG. 2. Comparison of input data B22.2 (HarvU-08) and B48
(LKB-11) through their inferred values of α. QED-10 and QED-
14 mean the QED theoretical expression for ae at the time of the
2010 and 2014 CODATA constants adjustments, and ArðeÞ-10
and ArðeÞ-14 have the same meaning for ArðeÞ. Both B22.2 and
B48 have the same value in the 2010 and 2014 adjustments and
are essentially the sole determinants of the recommended value of
α in each.

FIG. 3. Values of the Planck constant h with ur < 10−6 inferred
from the input data in Table XVIII and the 2014 CODATA
recommended value in chronological order from top to bottom
(see Table XXI).

Peter J. Mohr, David B. Newell, and Barry N. Taylor: CODATA recommended values of the fundamental ...

Rev. Mod. Phys., Vol. 88, No. 3, July–September 2016 035009-47

Proton 
gyromagnetic ratio

Muonium HFS

Quantum Hall RK  

Cs Interferometer 

Rb Interferometer

Electron g-2

CODATA2014,  2016



62 | Nature | Vol 588 | 3 December 2020

Article

accuracy on α by a factor of 2.5 over the previous caesium recoil meas-
urement3 but, most notably, it reveals a 5.4σ difference from this latest 
measurement.

We built a dedicated experimental setup and implemented robust 
methods to control systematic effects. By accelerating atoms up to 
6 m s−1 in 6 ms and using typical two-photon Raman transitions as beam 
splitters for the matter waves, we obtained a relative sensitivity on 
the recoil velocity of 0.6 ppb in 1 h of integration (0.3 ppb on α). This 
sensitivity is more than three times better than that obtained using 
the best atom interferometer based on multi-photon beam splitters3, 
although the latter technique is expected to provide a substantial gain 
in sensitivity with respect to Raman transitions15,16.

The unprecedented sensitivity of our atom interferometer enables us 
to experimentally evaluate and mitigate several systematic biases. We 
recorded data with different experimental parameters, reinforcing the 
overall confidence of our error budget. We also implemented a Monte 
Carlo simulation that includes both the Ramsey–Bordé atom interfer-
ometer and the Bloch oscillations process. This code models precisely 
the underlying physics of our interferometer and provides an accurate 
evaluation of systematic effects, consistent with experimental results.

Experiment
Our experimental method is illustrated in Fig. 2. The basic tools of our 
experiment are Bloch oscillations in an accelerated optical lattice, 
which enable the coherent transfer of a precise number of photon 
momenta to the atoms (typically 1,000ħk), and a matter-wave inter-
ferometer that measures the phase shift due to the change in velocity 
of the atoms. As in the optical domain, atom interferometry needs 
tools to split and recombine atomic wave packets; this is accomplished 
by a sequence of light pulses. The probability of detecting atoms in a 
given internal state at the output of the interferometer is a sinusoidal 
function of the accumulated phase difference along the two paths. 
Thus, the measurement of atomic populations enables the evalua-
tion of the phase shift. Using the combination of the Ramsey–Bordé 
interferometer configuration and Bloch oscillations, the phase shift 
is proportional to the ratio h/m (ref. 17).

We produce a cold rubidium sample using an optical molasses in 
the main chamber. Then, atoms are transported to the interferom-
etry area, a 70-cm-long tube surrounded by a two-layer magnetic 

shield. The magnetic field is controlled to within 50 nT. To that end, 
we use an atomic elevator based on two Bloch oscillation pulses 
(acceleration/deceleration)17. These are performed using two vertical 
counter-propagating laser beams, the frequency difference of which is 
swept to create an accelerated standing wave. Atomic trajectories are 
precisely adjusted by controlling this frequency difference. Between 
the two Bloch oscillation pulses of the elevator, we apply two Raman 
pulses to prepare atoms in a well defined atomic internal state (see 
Fig. 2b). Raman transitions occur between the two hyperfine levels 
of the ground state of the rubidium atom and are also implemented 
using two vertical counter-propagating laser beams (with wave vectors 
k1 = −k2 and kR = k1 ≈ k2). Their frequency difference ωR is controlled to 
compensate precisely the Doppler shift induced by the accelerations 
of the atoms.

The atom interferometer is illustrated in Fig. 2c. It is implemented 
with two pairs of π/2 Raman pulses. Each pulse acts as a beam splitter by 
transferring a momentum of 2ħkR to an atom with a probability of 50%. 
The first pair creates a coherent superposition of two spatially sepa-
rated wave packets in the same internal state with the same momentum. 
The second pair recombines the two wave packets. Between the second 
and third π/2 pulses, a Bloch oscillation pulse transfers a momentum 
of 2NBħkB to both wave packets, where NB is the number of Bloch oscil-
lations. The overall phase Φ of the interferometer is given by

Φ T ε k ε
N ħk

m
gT δω φ= 2

2
− − + , (2)R R R B

B B
R LS





















where TR is the time between the π/2 pulses of each pair, T is the time 
between the first and the third π/2 pulses, g is the gravitational accelera-
tion, φLS represents the phase corresponding to parasitic atomic level 
shifts and δωR is the difference of the Raman frequencies between the 
first and the third π/2 pulses. εR and εB determine the orientation of 
Raman and Bloch lasers wave vectors, respectively.

The fluorescence signal collected in the detection zone gives the 
number of atoms in each atomic level at the output of the interferom-
eter. Atomic fringes are obtained by measuring the fraction of atoms in 
a given internal state for varying δωR. Using a mean-square adjustment, 
we calculate δωR,0, the frequency for which Φ = 0. Gravity is cancelled 
between upward (εB = 1) and downward (εB = −1) acceleration (see Fig. 2). 
Constant level shifts φLS are mitigated by inverting the direction of the 
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Fig. 1 | Precision measurements of the fine-structure constant. Comparison 
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Suppose that an atom has two states |1> and |2>
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AN INTRODUCTION TO ATOM INTERFEROMETRY

Atom interferometry is the technique that underlies most of our precision measurements. We exploit
the fact that matter, like light, exhibits wave-like properties. Atoms, unlike light, are massive and
bear gravitational signals in their interference patterns. To understand atom interferometry, we first
must understand optical interferometry.

In optical interferometry, light waves are recombined after propagating along separate paths.
Depending on the difference in the waves' phase accumulated along the two paths, the light may
interfere constructively and appear bright or it may interfere destructively and appear dark.

In atom interferometry, we use atoms that are laser-cooled to millionths of a degree above absolute
zero. With pulses of light, we drive each atom into a quantum superpositions of having been kicked
with the momentum of photons and not having been kicked. The atoms, in two places at one time,
are in a superposition of recoiling backwards or staying still. By manipulating the state of the atoms
using one of two types of such light pulses, termed Bragg and Raman transitions (see Figures 2 and
3), we steer the matter waves' paths and recombine the matter waves at the end of the experiment.
The atoms' trajectories are shown in Figure 1. We use clouds of millions of atoms to get better
statistics on our measurement, and the interference signal manifests as a population difference
between final momentum states.

Figure 1: Spacetime trajectories of matterwave interferometers where (A) is a Mach-Zender geometry and (B) is a
pair of conjugate Ramsey Bordé interferometers. The vertical motion of atoms as a function of time (black) is
manipulated by the effects of fast light pulses (blue). Figure reproduced from arxiv:1312.6449

The energy and couplings along the atoms' path and their interaction the light pulses serve to
determine the phase shift between matter waves at the output of the interferometer. Any effect that
modifies the potential energy, internal energy, or kinetic energy across the two arms of the
interferometer appears in the interferometer phase. Different atom interferometer geometries can be
used to cancel certain phase terms while enhancing others. For example, in a Mach-Zehnder
interferometer we are only sensitive to the phase of the laser at the time that photons are transferred,
and all other phase terms cancel out. We therefore use the laser like a ruler to measure exactly how
fast the atoms accelerate. As another example, a simultaneous conjugate Ramsey-Borde
interferometer geometry cancels out all laser phase and also cancels out gravity to first order. The
primary phase term that is left is from the kinetic energy of absorbing photons, and we use this recoil
phase to measure the fine-structure constant.

Atom interferometers are used to measure gravitational acceleration, gravity gradients, accelerations, 
rotations, fundamental constants such as the gravitational constant and the fine structure 
constant, and can be used to measure or constrain new physics that couples to matter.

Figure 2: In a stimulated Raman transition, the atom
is illuminated with counter-propagating laser beams.
The atom absorbs a photon from one beam and emits
a photon into a beam moving the opposite direction.
The result is a net kick of 2 photon momenta. In this
type of transition, the atom changes both its kinetic
energy and its internal state.

Figure 3: In a Bragg transition, two counter-
propagating beams are detuned so that transferring a
specific number of photon momenta is resonant. In
this diagram, the atom absorbs the momentum of 8
photons, though a different detuning would transfer a
different number of photon momenta. The atom
remains in the ground electronic state, but gains
kinetic energy. Our group helped invent and
characterize this method for atom interferometry and
remains a speciality of two of our interferometers.
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with the momentum of photons and not having been kicked. The atoms, in two places at one time,
are in a superposition of recoiling backwards or staying still. By manipulating the state of the atoms
using one of two types of such light pulses, termed Bragg and Raman transitions (see Figures 2 and
3), we steer the matter waves' paths and recombine the matter waves at the end of the experiment.
The atoms' trajectories are shown in Figure 1. We use clouds of millions of atoms to get better
statistics on our measurement, and the interference signal manifests as a population difference
between final momentum states.

Figure 1: Spacetime trajectories of matterwave interferometers where (A) is a Mach-Zender geometry and (B) is a
pair of conjugate Ramsey Bordé interferometers. The vertical motion of atoms as a function of time (black) is
manipulated by the effects of fast light pulses (blue). Figure reproduced from arxiv:1312.6449

The energy and couplings along the atoms' path and their interaction the light pulses serve to
determine the phase shift between matter waves at the output of the interferometer. Any effect that
modifies the potential energy, internal energy, or kinetic energy across the two arms of the
interferometer appears in the interferometer phase. Different atom interferometer geometries can be
used to cancel certain phase terms while enhancing others. For example, in a Mach-Zehnder
interferometer we are only sensitive to the phase of the laser at the time that photons are transferred,
and all other phase terms cancel out. We therefore use the laser like a ruler to measure exactly how
fast the atoms accelerate. As another example, a simultaneous conjugate Ramsey-Borde
interferometer geometry cancels out all laser phase and also cancels out gravity to first order. The
primary phase term that is left is from the kinetic energy of absorbing photons, and we use this recoil
phase to measure the fine-structure constant.

Atom interferometers are used to measure gravitational acceleration, gravity gradients, accelerations, 
rotations, fundamental constants such as the gravitational constant and the fine structure 
constant, and can be used to measure or constrain new physics that couples to matter.

Figure 2: In a stimulated Raman transition, the atom
is illuminated with counter-propagating laser beams.
The atom absorbs a photon from one beam and emits
a photon into a beam moving the opposite direction.
The result is a net kick of 2 photon momenta. In this
type of transition, the atom changes both its kinetic
energy and its internal state.

Figure 3: In a Bragg transition, two counter-
propagating beams are detuned so that transferring a
specific number of photon momenta is resonant. In
this diagram, the atom absorbs the momentum of 8
photons, though a different detuning would transfer a
different number of photon momenta. The atom
remains in the ground electronic state, but gains
kinetic energy. Our group helped invent and
characterize this method for atom interferometry and
remains a speciality of two of our interferometers.
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Recoil or Doppler shiO
An atom  goes up from  |1> to |2> absorbing a photon (ω). 
Then, it comes back from |2> to |1> emitting a photon (ω’).

Energy conservation:

Photon frequencies can be precisely determined.
So, if the velocity of an atom is determined,  

h/M can be determined.

Hyperfine level F=3 and F=4 of Cs atom
Hyperfine level F=1 and F=2 of Rb atom will be used.
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splitters for the matter waves; these processes
increase the recoil energy by a factor of 25 rela-
tive to standard two-photon Raman processes (11).
To accelerate the atoms by up to another 800ℏk
(400ℏk up, 400ℏk down), we applied a matter-
wave accelerator: Atoms were loaded into an
optical lattice, a standing wave generated by two
laser beams, which was accelerated by ramping
the frequency of the lasers (Bloch oscillations)
(7, 12). Coriolis force compensation suppressed
the effect of Earth’s rotation. In addition, we ap-

plied ac Stark shift compensation (13, 14) and dem-
onstrated a spatial-filtering technique to reduce
sources of decoherence, further enhance the sen-
sitivity, and suppress systematic phase shifts. An
end-to-end simulation of the experimentwas run
(12) to help us identify and reduce systematic
errors and confirm the error budget. To avoid
possible bias, we adopted a blindmeasurement
protocol, which was unblinded only at the end.
Combining with precise measurements of the
cesium (15) and electron (16) mass, we found

a−1 = 137.035999046(27)

with a statistical uncertainty of 0.16 ppb and a
systematic uncertainty of 0.12 ppb (0.20 ppb total).
Our result is a more than threefold improve-
ment over previous direct measurements of a
(7). The measurement of h/mCs = 3.0023694721
(12) × 10−9 m2/s also provides an absolute mass
standard in the context of the proposed new defi-
nition of the kilogram (10). This proposed defini-
tion will assign a fixed numerical value to Planck’s
constant, to which mass measurements could then
be linked through measurements of h/mAt, such
as this one, via Avogadro spheres. Our result
agrees with previous recoil measurements (7)
within 1s uncertainty and has a 2.5s tension with
measurements (4–6) based on the gyromagnetic
moment.
Our matter-wave interferometer is based on

the one described in (12), in which cesium atoms
are loaded in a magneto-optical trap, launched
upward in an atomic fountain, and detected as
they fall back down—the interferometer sequence
occurs during the parabolic flight. Figure 2 shows
the trajectories of an atom wave packet in our
experiment, formed by impulses from pairs of
vertical, counterpropagating laser pulses on the
atoms. Each pulse transfers the momentum of
2n = 10 photons (where n is the order of Bragg
diffraction) with near 50% probability by multi-
photonBragg diffraction, acting as a beam splitter
for matter waves. Bragg diffraction allows for
large momentum transfer at each beam splitter,
creating a pair of atom wave packets that sep-
arate with a velocity of ~35 mm/s. After a time
interval T, a similar pulse splits the wave packets
again, creating one pair that moves upward and
one that moves down.
The third and fourth pulses recombine the

respective paths to form two interferometers.
Between the second and the third pulses, we
accelerated the atom groups further from one
another, using Bloch oscillations in accelerated
optical lattices, to increase the sensitivity and
suppress systematic effects. This transfers þ2Nℏk
of momentum to the upper interferometer and
"2Nℏk to the lower interferometer (N, num-
ber of Bloch oscillations) (13).
The phase difference between the interferom-

eter arms arises as a result of the kinetic energy
ðℏkÞ2=ð2mCsÞ that the atoms gain from the recoil
momentum of the photon-atom interactions and
from the phase transferred during the atoms’ in-
teraction with the laser beams. Taking the phase
difference between the two interferometers cancels
effects due to gravity and vibrations. In the absence
of systematic effects, the overall phase F of the in-
terferometer geometry shown in Fig. 2 is given by
(12, 17)

F ¼ Df1 " Df2 ¼ 16nðnþ NÞwrT " 2nwmT

where Df1;2 are the measured phases of the two
interferometers individually, wr ¼ ℏk2=ð2mCsÞ
is the photon recoil frequency, T is the time be-
tween the laser pulses, and wm is the laser fre-
quency difference we choose to apply between
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Fig. 2. Simultaneous
conjugate atom interfer-
ometers. Solid lines
denote the atoms’ trajec-
tories; dashed lines repre-
sent laser pulses with
their frequencies indi-
cated. jni denotes a
momentum eigenstate
with momentum 2nℏk. BO,
Bloch oscillations. In this
figure, gravity is
neglected. A to D repre-
sent interferometer
outputs.

Table 1. Error budget. For each systematic effect, more discussion can be found in the listed
section of the supplementary materials. N/A, not applicable.

Effect Section da/a (ppb)

This study
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Laser frequency 1 –0.24 ± 0.03
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Acceleration gradient 4A –1.79 ± 0.02
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Gouy phase 3 –2.60 ± 0.03
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Beam alignment 5 0.05 ± 0.03
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Bloch oscillation light shift 6 0 ± 0.002
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Density shift 7 0 ± 0.003
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Index of refraction 8 0 ± 0.03
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Speckle phase shift 4B 0 ± 0.04
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Sagnac effect 9 0 ± 0.001
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Modulation frequency wave number 10 0 ± 0.001
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Thermal motion of atoms 11 0 ± 0.08
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Non-Gaussian waveform 13 0 ± 0.03
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Parasitic interferometers 14 0 ± 0.03
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Total systematic error All previous –4.58 ± 0.12
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Statistical error N/A ±0.16
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Other studies
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Electron mass (16) N/A ±0.02
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Cesium mass (6, 15) N/A ±0.03
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Rydberg constant (6) N/A ±0.003
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Combined result
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Total uncertainty in a N/A ±0.20
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .
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Raman beams (εR = ±1). The shot-to-shot parameters of the interferom-
eter (δωR, εR, εB) are applied randomly to avoid drifts. We record four 
spectra (Fig. 3a) that yield
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Data analysis
For the conditions of Fig. 3a, the typical uncertainty on δωR,0 is 55 mHz. 
This leads to a statistical uncertainty on h/m of less than 2 ppb in 5 min. 
The behaviour of the Allan deviation calculated with a set of h/m meas-
urements over 56 h (Fig. 3b) shows that the data are independent (no 
correlations or long-term drift). It also indicates that the sensitivity of 
our setup on α is 8 × 10−11 in 14 h.

Table 1 presents our error budget. Several systematic effects identi-
fied in our previous measurement18 have been reduced by at least one 
order of magnitude. By controlling the experimental parameters of the 
atomic elevator, we are able to adjust precisely the altitude of atomic 
trajectories within 100 µm in such way that the gravity gradient can-
cels out between the configurations εB = 1 and εB = −1 (see Fig. 2c). The 
effect of Earth’s rotation is suppressed by continuously rotating one 
of the Raman beams during the interferometric pulse sequence19. The 
long-term drift of the beam alignment is corrected with an accuracy 
better than 4 µrad every 45 min by controlling the retro-reflection of 
the laser beams via a single-mode optical fibre. Our lasers are locked 
on a stabilized Fabry–Pérot cavity and their frequencies are regularly 
measured using a frequency comb with an accuracy of less than 4 kHz. 
The low density of our atomic sample implies a reduction of the effects 
of the refraction index and atom–atom interaction20 to less than 1 ppt. 
Effects related to the geometrical parameters of the laser beams (Gouy 
phase and wave front curvature) are mitigated by using a 4.9-mm-waist 
beam passing through an apodizing filter and by adjusting the curva-
ture with a shearing interferometer.

Among the recently identified systematic effects, the most subtle one 
is related to correlations between the efficiency of the Bloch oscillations 
and short-scale spatial fluctuations in laser intensity. This effect raises 

the question of how to calculate the photon momentum in a distorted 
optical field. Relying on our previous work21, we reduce the contribu-
tion of this effect to the error budget to less than 0.02 ppb. Because of 
the expansion of the atomic cloud, there is a residual phase shift that is 
due to the variation of the intensity perceived by the atoms. This phase 
shift depends on the velocity distribution22,23. We implement a method 
to compensate for the mean intensity variation and use a Monte Carlo 
simulation to evaluate the residual bias due to this Raman phase shift.

During the interferometer sequence, we apply a frequency ramp to 
compensate the Doppler shift induced by gravity. Nonlinearity in the 
delay of the optical phase-lock loop induces a residual phase shift that 
is measured and corrected for each spectrum. These systematic effects 
were not considered in our previous measurement18 (see Fig. 1), which 
could explain the 2.4σ discrepancy between that measurement and the 
present one. Unfortunately, we do not have available data to evaluate ret-
rospectively the contributions of the phase shift in the Raman phase-lock 
loop and of short-scale fluctuations in the laser intensity to the 2011 
measurement. Thus, we cannot firmly state that these two effects are 
the cause of the 2.4σ discrepancy between our two measurements.

Overall systematic errors contribute an uncertainty of 6.8 × 10−11. 
Figure 3c shows the data used for the determination of α. Each point 
represents about 10 h of data. We took advantage of the sensitivity and 
reproducibility of our setup to study systematic effects by varying the 
experimental parameters (such as pulse-separation time, number of 
Bloch oscillations, duration of Bloch pulse, laser intensity and atomic 
trajectories). In parallel, we performed theoretical modelling and 
numerical simulations to interpret the experimental observations. 
The measurement campaign lasted one year and ended when consistent 
values were obtained for the different configurations.

Using our measurement of the fine-structure constant, the 
standard-model prediction of the anomalous magnetic moment of 
the electron becomes

a α
g

( ) =
− 2

2
= 1,159,652, 180.252 (95) × 10 .e LKB2020

e −12

The relative uncertainty on ge is below 0.1 ppt, which is the most accu-
rate prediction of the standard model. Comparison with the direct 
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Fig. 2 | Experimental setup. a, Design of the vacuum chamber; the atom 
interferometer—a 70-cm-long magnetically shielded tube—is located in the 
upper area. b, Sequence of Bloch oscillations (B.O., red) and Raman pulses 
(yellow) used to control the trajectory of atoms before starting the atom 

interferometer. c, Atom interferometer light pulse sequence. The atomic 
trajectories for upward (blue) and downward (purple) accelerations are 
previously calculated to mitigate the gravity gradient effect. The separation 
between the two paths of each interferometer is exaggerated for clarity.
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Peskin ２章で用いた鞍点法による積分の評価方法について、簡単にまとめます。（数学
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量子化には交換関係に基づく正準量子化のほかに、経路積分による量子化という手法が

あります。経路積分量子化で、摂動論では拾い上げることができない非摂動論的な効果を
見る近似法に、鞍点法を用いることがあります。量子力学での非摂動論的効果で最も知ら
れているのはトンネル効果です。指数減衰する透過確率は摂動計算では再現できず、WKB
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ルの導出、２次元量子重量理論での物質場の個数が負の無限大での極限などの評価などで
使われました。

2

R∞

RK =
h

e2
=

1

2αε0c

ε0, c

RK = 25812.68± 0.028 Ω

α−1 = 137.0353± 0.004

RK = 25812.807 45 Ω

Φ = TR[4NB
!kRkB
mRb

− δωR]

Φ = T [8n(n+N)
!k2
mCs

− 2nωm]

1 まえがき
Peskin ２章で用いた鞍点法による積分の評価方法について、簡単にまとめます。（数学

的厳密さには欠けています。）
量子化には交換関係に基づく正準量子化のほかに、経路積分による量子化という手法が

あります。経路積分量子化で、摂動論では拾い上げることができない非摂動論的な効果を
見る近似法に、鞍点法を用いることがあります。量子力学での非摂動論的効果で最も知ら
れているのはトンネル効果です。指数減衰する透過確率は摂動計算では再現できず、WKB

近似（半古典近似）などで評価します。WKB近似は、さんすうとしては鞍点法に他なり
ません。量子場の理論ですと、!が 0での極限での Coleman-Weinbergの有効ポテンシャ
ルの導出、２次元量子重量理論での物質場の個数が負の無限大での極限などの評価などで
使われました。

2

h/m(Rb)  2020,  Nature
Morel et al.

Find  difference in Raman frequencies                     s. t.    

R∞

RK =
h

e2
=

1

2αε0c

ε0, c

RK = 25812.68± 0.028 Ω

α−1 = 137.0353± 0.004

RK = 25812.807 45 Ω

Φ = TR[4NB
!kRkB
mRb

− δωR]

Φ = T [8n(n+N)
!k2
mCs

− 2nωm]

ωm δωR Φ = 0

1 まえがき
Peskin ２章で用いた鞍点法による積分の評価方法について、簡単にまとめます。（数学

的厳密さには欠けています。）
量子化には交換関係に基づく正準量子化のほかに、経路積分による量子化という手法が

あります。経路積分量子化で、摂動論では拾い上げることができない非摂動論的な効果を
見る近似法に、鞍点法を用いることがあります。量子力学での非摂動論的効果で最も知ら
れているのはトンネル効果です。指数減衰する透過確率は摂動計算では再現できず、WKB

近似（半古典近似）などで評価します。WKB近似は、さんすうとしては鞍点法に他なり
ません。量子場の理論ですと、!が 0での極限での Coleman-Weinbergの有効ポテンシャ
ルの導出、２次元量子重量理論での物質場の個数が負の無限大での極限などの評価などで
使われました。

2

R∞

RK =
h

e2
=

1

2αε0c

ε0, c

RK = 25812.68± 0.028 Ω

α−1 = 137.0353± 0.004

RK = 25812.807 45 Ω

Φ = TR[4NB
!kRkB
mRb

− δωR]

Φ = T [8n(n+N)
!k2
mCs

− 2nωm]

ωm or δωR Φ = 0

1 まえがき
Peskin ２章で用いた鞍点法による積分の評価方法について、簡単にまとめます。（数学

的厳密さには欠けています。）
量子化には交換関係に基づく正準量子化のほかに、経路積分による量子化という手法が

あります。経路積分量子化で、摂動論では拾い上げることができない非摂動論的な効果を
見る近似法に、鞍点法を用いることがあります。量子力学での非摂動論的効果で最も知ら
れているのはトンネル効果です。指数減衰する透過確率は摂動計算では再現できず、WKB

近似（半古典近似）などで評価します。WKB近似は、さんすうとしては鞍点法に他なり
ません。量子場の理論ですと、!が 0での極限での Coleman-Weinbergの有効ポテンシャ
ルの導出、２次元量子重量理論での物質場の個数が負の無限大での極限などの評価などで
使われました。

2

h/m(Cs)  2018, Science
Parker et al.



Apparatus 

 
 

Supplementary Text 

This PDF file includes: 

Supplementary Text 

Figs. S1 to S10 

Table S1 

Section 1: Overview of the Atom Interferometer 
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Raman beams (εR = ±1). The shot-to-shot parameters of the interferom-
eter (δωR, εR, εB) are applied randomly to avoid drifts. We record four 
spectra (Fig. 3a) that yield
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Data analysis
For the conditions of Fig. 3a, the typical uncertainty on δωR,0 is 55 mHz. 
This leads to a statistical uncertainty on h/m of less than 2 ppb in 5 min. 
The behaviour of the Allan deviation calculated with a set of h/m meas-
urements over 56 h (Fig. 3b) shows that the data are independent (no 
correlations or long-term drift). It also indicates that the sensitivity of 
our setup on α is 8 × 10−11 in 14 h.

Table 1 presents our error budget. Several systematic effects identi-
fied in our previous measurement18 have been reduced by at least one 
order of magnitude. By controlling the experimental parameters of the 
atomic elevator, we are able to adjust precisely the altitude of atomic 
trajectories within 100 µm in such way that the gravity gradient can-
cels out between the configurations εB = 1 and εB = −1 (see Fig. 2c). The 
effect of Earth’s rotation is suppressed by continuously rotating one 
of the Raman beams during the interferometric pulse sequence19. The 
long-term drift of the beam alignment is corrected with an accuracy 
better than 4 µrad every 45 min by controlling the retro-reflection of 
the laser beams via a single-mode optical fibre. Our lasers are locked 
on a stabilized Fabry–Pérot cavity and their frequencies are regularly 
measured using a frequency comb with an accuracy of less than 4 kHz. 
The low density of our atomic sample implies a reduction of the effects 
of the refraction index and atom–atom interaction20 to less than 1 ppt. 
Effects related to the geometrical parameters of the laser beams (Gouy 
phase and wave front curvature) are mitigated by using a 4.9-mm-waist 
beam passing through an apodizing filter and by adjusting the curva-
ture with a shearing interferometer.

Among the recently identified systematic effects, the most subtle one 
is related to correlations between the efficiency of the Bloch oscillations 
and short-scale spatial fluctuations in laser intensity. This effect raises 

the question of how to calculate the photon momentum in a distorted 
optical field. Relying on our previous work21, we reduce the contribu-
tion of this effect to the error budget to less than 0.02 ppb. Because of 
the expansion of the atomic cloud, there is a residual phase shift that is 
due to the variation of the intensity perceived by the atoms. This phase 
shift depends on the velocity distribution22,23. We implement a method 
to compensate for the mean intensity variation and use a Monte Carlo 
simulation to evaluate the residual bias due to this Raman phase shift.

During the interferometer sequence, we apply a frequency ramp to 
compensate the Doppler shift induced by gravity. Nonlinearity in the 
delay of the optical phase-lock loop induces a residual phase shift that 
is measured and corrected for each spectrum. These systematic effects 
were not considered in our previous measurement18 (see Fig. 1), which 
could explain the 2.4σ discrepancy between that measurement and the 
present one. Unfortunately, we do not have available data to evaluate ret-
rospectively the contributions of the phase shift in the Raman phase-lock 
loop and of short-scale fluctuations in the laser intensity to the 2011 
measurement. Thus, we cannot firmly state that these two effects are 
the cause of the 2.4σ discrepancy between our two measurements.

Overall systematic errors contribute an uncertainty of 6.8 × 10−11. 
Figure 3c shows the data used for the determination of α. Each point 
represents about 10 h of data. We took advantage of the sensitivity and 
reproducibility of our setup to study systematic effects by varying the 
experimental parameters (such as pulse-separation time, number of 
Bloch oscillations, duration of Bloch pulse, laser intensity and atomic 
trajectories). In parallel, we performed theoretical modelling and 
numerical simulations to interpret the experimental observations. 
The measurement campaign lasted one year and ended when consistent 
values were obtained for the different configurations.

Using our measurement of the fine-structure constant, the 
standard-model prediction of the anomalous magnetic moment of 
the electron becomes

a α
g

( ) =
− 2

2
= 1,159,652, 180.252 (95) × 10 .e LKB2020

e −12

The relative uncertainty on ge is below 0.1 ppt, which is the most accu-
rate prediction of the standard model. Comparison with the direct 
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experimental measurement ae,exp (ref. 9) gives δae = ae,exp− ae(αLKB2020) 
= (4.8 ± 3.0) × 10−13 (+1.6σ), whereas comparison with caesium recoil 
measurements gives δ′ae = ae,exp − ae(αBerkeley) = (−8.8 ± 3.6) × 10−13 (−2.4σ). 
The uncertainty on δae is dominated by ae,exp.

Discussion
Our measurement sets additional limits on theories beyond the stand-
ard model that lead to a contribution to ae. Using a Bayes method24, 
our result implies that for a theory with positive δae, we can reject 
δae > 9.8 × 10−13 with a 95% confidence level, and for a theory with nega-
tive δae, we can reject δae < −3.4 × 10−13 with a 95% confidence level.

For example, our result modifies the limits on a possible substructure 
within the electron. If the electron is composed of constituent particles 
of mass m* bound together by some unknown attraction, its natural 
size should be R = ħ/(m*c) and its magnetic moment would be modified 
by δae ≈ me/m* using the simplest analysis. According to the chirally 
invariant model25, our result excludes regions with m* < 520 GeV/c2 or 
R > 4 × 10−19 m with a confidence level of 95%. These are stringent limits 
set by low-energy experiments, although they are not yet at the limits 
of the Large Electron–Positron collider (the largest electron–positron 
collider available today)26.

Moreover, our result sets the stage for testing whether the persis-
tent discrepancy of 3.6σ between the experimental value5 and the 
standard-model prediction of the magnetic moment of the muon27,28 
(aµ) exists for electrons. If this discrepancy (δaµ) is the signature of new 
physics, similar effects could be observable for electrons. Using naive 
scaling, the effects on the electron would be of the order of (me/mµ)2δaµ 
(ref. 6), where mµ is the mass of the muon. Figure 4a summarizes the over-
all contributions of experiments involved in the determination of δae. We 
also include the largest theoretical contributions from the fifth order of 
the QED series and the hadronic term. The dominant contribution comes 
from the direct measurement of the electron moment anomaly, ae,exp. For 
the first time, the contribution of the recoil measurement (h/m) is at the 
level of (me/mµ)2δaµ ≈ 6.5 × 10−14, the value of δae deduced from the naive 
scaling (horizontal green bar). In the next years, improvement of one 

order of magnitude is expected for the accuracy of the measurement of 
ae,exp (ref. 29); it will then be possible to probe physics beyond the standard 
model with comparable information from both the electron and muon.
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Fig. 3 | Data analysis. a, Typical set of four spectra recorded by inverting the 
directions of the Raman and Bloch beams for TR = 20 ms and NB = 500. Each 
spectrum displays the variation of the relative atomic population with respect 
to the parameter δωR. The lines are least-squares fits used to determine the 
position of the central fringe displayed on the top of each spectrum. b, Allan 
deviation σα of the measurement of the fine-structure constant α at maximum 
sensitivity (TR = 20 ms, NB = 500) as a function of the integration time τ. The line 
corresponds to σ τ τ( ) = 3 × 10 /α

−10 , with τ expressed in hours. Error bars 

indicate 1σ uncertainties. c, Datasets used to determine the value of the 
fine-structure constant, α. Data are obtained by changing the following 
experimental parameters: the pulse separation time, TR, the number of Bloch 
oscillations, NB, and their total duration, τB. The circles and diamonds 
correspond to two different laser intensities during the π/2 pulses of the 
interferometer. Error bars denote ±1σ and are estimated from the standard 
deviation of the mean. The blue band represents the overall the ±1σ standard 
deviation. The reduced χ2 for the combined data is 1.4.

Table 1 | Error budget on α

Source Correction (×10−11) Relative uncertainty (×10−11)

Gravity gradient −0.6 0.1

Alignment of the beams 0.5 0.5

Coriolis acceleration 1.2

Frequencies of the lasers 0.3

Wave-front curvature 0.6 0.3

Wave-front distortion 3.9 1.9

Gouy phase 108.2 5.4

Residual Raman light shift 2.3 2.3

Index of refraction 0 <0.1

Internal interaction 0 <0.1

Light shift (two-photon 
transition)

−11.0 2.3

Second-order Zeeman 
effect

0.1

Phase shifts in Raman 
phase-lock loop

−39.8 0.6

Global systematic effects 64.2 6.8
Statistical uncertainty 2.4
Relative mass of 87Rba: 86.9091805310(60) 3.5

Relative mass of the electronb: 
5.48579909065(16) × 10−4

1.5

Rydberg constantb: 10,973,731.568160(21) m−1 0.1

Total: α−1 = 137.035999206(11) 8.1

For each systematic effect, more discussion can be found in Methods. 
aFrom ref. 13. 
bFrom https://pml.nist.gov/cuu/Constants/.

the first and second pairs of pulses (Fig. 2). A
measurement proceeds by adjusting wm to find
the point where F ¼ 0 so that wm= 8(n + N)wr.
Because the wave number k of the laser is re-
lated to the laser frequency, this yields h/mCs

and, thus, a. In our measurement, n = 5, N = 125
to 200, and T = 5 to 80ms, so thatF is 106 to 107

rad and wm is 2 to 3 MHz.
Our error budget (Table 1) includes the sys-

tematic effects considered in the previous rubid-
ium h/mCs measurement (7). These systematic
effects are dominant, and several methods are
used to reduce them (18). Our laser frequency is

monitored using a frequency comb generator. Ef-
fects caused by the finite radius of the laser beam
are controlled by a retro-reflection geometry: de-
livering all components of the beam via the same
single-mode optical fiber, using an apodizing filter
to improve the Gaussian beam shape, selecting
only atoms that stay close to the beam axis, and
correcting for drift of the beam alignment in real
time to further suppress such effects. The gravity
gradient has beenmeasured in situ for subtrac-
tion by configuring the atom interferometer as
a gravity gradiometer (19–21). Keeping atoms
in the same internal state while in all interfer-

ometer arms reduces the influence of the Zeeman
effect to the one of an acceleration gradient, taken
out by the gravity gradient measurement. The
index of refraction and atom-atom interactions
are reduced by the low density of our atomic
sample (18).
New systematic effects arise fromBragg diffrac-

tion but can be suppressed to levels much smaller
than the well-known systematics just mentioned.
The potentially largest systematic is the diffraction
phaseF0, whichwe have studied in previous work
(12, 13). It is causedprimarily by off-resonantBragg
scattering in the third and fourth laser pulse,
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Fig. 3. Data analysis. (A) Fluorescence signals of the atom clouds as they
fall through the detection region, after the interferometer sequence, for
varying number N of Bloch oscillations, measured with fixed laser power
and acceleration of the atoms during Bloch oscillations. For visibility, a
vertical offset has been applied to each trace. The four outer peaks
correspond to the four outputs A to D (Fig. 2) of the interferometers. Atoms
left behind by the Bloch oscillations form the central peaks; they do not
contribute to the measurement. T = 5 ms for these data sets. (B) Outputs of

each interferometer are normalized and plotted parametrically: the x axis is
(C − D)/(C + D) and the y axis is (A − B)/(A + B) (A to D are defined in Fig. 2).
This produces an ellipse, which is fitted to extract the differential phase.The
ellipses shown are for n = 5, N = 125, and T = 5, 20, 40, and 80 ms (for a total
interferometer phase of >10 Mrad), respectively. (C) Data sets used in the
determination of a. The pink band represents the overall ±1s statistical error.
The reduced c2 for the combined data is 1.2, with a P value of 0.2. !a is the
weighted average of the measurements. Error bars indicate 1s uncertainty.
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α from h/M

R∞

α =

[
h

M
× Ar(M)

Ar(me)
× 2R∞

c

]1/2

RK =
h

e2
=

1

2αε0c

ε0, c

RK = 25812.68± 0.028 Ω

α−1 = 137.0353± 0.004

RK = 25812.807 45 Ω

Φ = TR[4NB
!kRkB
mRb

− δωR]

Φ = T [8n(n+N)
!k2
mCs

− 2nωm]

ωm or δωR Φ = 0

ω − ω12 = %k · %v + !k2
2M

ω − ω′ = (%k + %k′) · %v + !
2M

(%k + %k′)2

!ω +
%v2

2M
= !δω12 +

(M%v + !%k)2
2M

2

H. Mueller, Nature 2020



Constants determinaJon 

• Rydberg constant  R∞

Hydrogen atom spectroscopy  +  QED calcula_on

• Rela_ve atomic mass Ar(M),   Ar(me)    
Ar(M)   Cs+ or Rb+ ion in Penning trap 
an ion mass is converted to an atom mass

adding an electron mass and ioniza_on energy.
Ar(me)    12C+5  ion in Penning trap,  bound-g factor
Cyclotron frequency ~1/mC and Zeeman splibng  ~1/me

CODATA2014



Values of R∞

!ω +
"v2

2M
= !δω12 +

(M"v + !"k)2
2M

CODATA2018 10 973 731.568 160 (21) m−1 Announced in 2020

1S-3S 10 973 731.568 53 (14) m−1 Fleurbaey et al. 2018

2S-4P 10 973 731.568 076 (96) m−1 Beyer et al. 2017

CODATA2014 10 973 731.568 508 (65) m−1 Announced in 2016

1 まえがき
Peskin ２章で用いた鞍点法による積分の評価方法について、簡単にまとめます。（数学

的厳密さには欠けています。）
量子化には交換関係に基づく正準量子化のほかに、経路積分による量子化という手法が

あります。経路積分量子化で、摂動論では拾い上げることができない非摂動論的な効果を
見る近似法に、鞍点法を用いることがあります。量子力学での非摂動論的効果で最も知ら
れているのはトンネル効果です。指数減衰する透過確率は摂動計算では再現できず、WKB

近似（半古典近似）などで評価します。WKB近似は、さんすうとしては鞍点法に他なり
ません。量子場の理論ですと、!が 0での極限での Coleman-Weinbergの有効ポテンシャ
ルの導出、２次元量子重量理論での物質場の個数が負の無限大での極限などの評価などで
使われました。

2 実関数
積分　

I(k) =

∫
dxekf(x)

を考える。
f(x)が x = x0で極大値を持つならば、f ′(x0) = 0, f ′′(x0) < 0 であり

I(k) =

∫
dxek{f(x0)− (x−x0)

2

2 |f ′′(x0)|+O((x−x0)3)}

と書ける。k > 0が十分に大きいならば、指数関数の肩の第２項の寄与は第 1項にくらべ
て、急速に小さくなる。したがって、

lim
k→+∞

I(k) = ekf(x0)
∫

dxe−k(x−x0)2|f ′′(x0)|

= ekf(x0)

√
2π

k|f ′′(x0)|

3

To clarify proton charge radius puzzle, 
two new experiments on H-atom were performed

2.7σ difference  b.w. 2017 and 2018 measurements
h/m(Rb)  uses CODATA2018 R∞ 1.9 ppt
h/m(Cs)   uses CODATA2014 R∞ 5.9 ppt
Both are sufficiently accurate for α w/  81 ppt
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experimental measurement ae,exp (ref. 9) gives δae = ae,exp− ae(αLKB2020) 
= (4.8 ± 3.0) × 10−13 (+1.6σ), whereas comparison with caesium recoil 
measurements gives δ′ae = ae,exp − ae(αBerkeley) = (−8.8 ± 3.6) × 10−13 (−2.4σ). 
The uncertainty on δae is dominated by ae,exp.

Discussion
Our measurement sets additional limits on theories beyond the stand-
ard model that lead to a contribution to ae. Using a Bayes method24, 
our result implies that for a theory with positive δae, we can reject 
δae > 9.8 × 10−13 with a 95% confidence level, and for a theory with nega-
tive δae, we can reject δae < −3.4 × 10−13 with a 95% confidence level.

For example, our result modifies the limits on a possible substructure 
within the electron. If the electron is composed of constituent particles 
of mass m* bound together by some unknown attraction, its natural 
size should be R = ħ/(m*c) and its magnetic moment would be modified 
by δae ≈ me/m* using the simplest analysis. According to the chirally 
invariant model25, our result excludes regions with m* < 520 GeV/c2 or 
R > 4 × 10−19 m with a confidence level of 95%. These are stringent limits 
set by low-energy experiments, although they are not yet at the limits 
of the Large Electron–Positron collider (the largest electron–positron 
collider available today)26.

Moreover, our result sets the stage for testing whether the persis-
tent discrepancy of 3.6σ between the experimental value5 and the 
standard-model prediction of the magnetic moment of the muon27,28 
(aµ) exists for electrons. If this discrepancy (δaµ) is the signature of new 
physics, similar effects could be observable for electrons. Using naive 
scaling, the effects on the electron would be of the order of (me/mµ)2δaµ 
(ref. 6), where mµ is the mass of the muon. Figure 4a summarizes the over-
all contributions of experiments involved in the determination of δae. We 
also include the largest theoretical contributions from the fifth order of 
the QED series and the hadronic term. The dominant contribution comes 
from the direct measurement of the electron moment anomaly, ae,exp. For 
the first time, the contribution of the recoil measurement (h/m) is at the 
level of (me/mµ)2δaµ ≈ 6.5 × 10−14, the value of δae deduced from the naive 
scaling (horizontal green bar). In the next years, improvement of one 

order of magnitude is expected for the accuracy of the measurement of 
ae,exp (ref. 29); it will then be possible to probe physics beyond the standard 
model with comparable information from both the electron and muon.
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Fig. 3 | Data analysis. a, Typical set of four spectra recorded by inverting the 
directions of the Raman and Bloch beams for TR = 20 ms and NB = 500. Each 
spectrum displays the variation of the relative atomic population with respect 
to the parameter δωR. The lines are least-squares fits used to determine the 
position of the central fringe displayed on the top of each spectrum. b, Allan 
deviation σα of the measurement of the fine-structure constant α at maximum 
sensitivity (TR = 20 ms, NB = 500) as a function of the integration time τ. The line 
corresponds to σ τ τ( ) = 3 × 10 /α

−10 , with τ expressed in hours. Error bars 

indicate 1σ uncertainties. c, Datasets used to determine the value of the 
fine-structure constant, α. Data are obtained by changing the following 
experimental parameters: the pulse separation time, TR, the number of Bloch 
oscillations, NB, and their total duration, τB. The circles and diamonds 
correspond to two different laser intensities during the π/2 pulses of the 
interferometer. Error bars denote ±1σ and are estimated from the standard 
deviation of the mean. The blue band represents the overall the ±1σ standard 
deviation. The reduced χ2 for the combined data is 1.4.

Table 1 | Error budget on α

Source Correction (×10−11) Relative uncertainty (×10−11)

Gravity gradient −0.6 0.1

Alignment of the beams 0.5 0.5

Coriolis acceleration 1.2

Frequencies of the lasers 0.3

Wave-front curvature 0.6 0.3

Wave-front distortion 3.9 1.9

Gouy phase 108.2 5.4

Residual Raman light shift 2.3 2.3

Index of refraction 0 <0.1

Internal interaction 0 <0.1

Light shift (two-photon 
transition)

−11.0 2.3

Second-order Zeeman 
effect

0.1

Phase shifts in Raman 
phase-lock loop

−39.8 0.6

Global systematic effects 64.2 6.8
Statistical uncertainty 2.4
Relative mass of 87Rba: 86.9091805310(60) 3.5

Relative mass of the electronb: 
5.48579909065(16) × 10−4

1.5

Rydberg constantb: 10,973,731.568160(21) m−1 0.1

Total: α−1 = 137.035999206(11) 8.1

For each systematic effect, more discussion can be found in Methods. 
aFrom ref. 13. 
bFrom https://pml.nist.gov/cuu/Constants/.
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2020

the first and second pairs of pulses (Fig. 2). A
measurement proceeds by adjusting wm to find
the point where F ¼ 0 so that wm= 8(n + N)wr.
Because the wave number k of the laser is re-
lated to the laser frequency, this yields h/mCs

and, thus, a. In our measurement, n = 5, N = 125
to 200, and T = 5 to 80ms, so thatF is 106 to 107

rad and wm is 2 to 3 MHz.
Our error budget (Table 1) includes the sys-

tematic effects considered in the previous rubid-
ium h/mCs measurement (7). These systematic
effects are dominant, and several methods are
used to reduce them (18). Our laser frequency is

monitored using a frequency comb generator. Ef-
fects caused by the finite radius of the laser beam
are controlled by a retro-reflection geometry: de-
livering all components of the beam via the same
single-mode optical fiber, using an apodizing filter
to improve the Gaussian beam shape, selecting
only atoms that stay close to the beam axis, and
correcting for drift of the beam alignment in real
time to further suppress such effects. The gravity
gradient has beenmeasured in situ for subtrac-
tion by configuring the atom interferometer as
a gravity gradiometer (19–21). Keeping atoms
in the same internal state while in all interfer-

ometer arms reduces the influence of the Zeeman
effect to the one of an acceleration gradient, taken
out by the gravity gradient measurement. The
index of refraction and atom-atom interactions
are reduced by the low density of our atomic
sample (18).
New systematic effects arise fromBragg diffrac-

tion but can be suppressed to levels much smaller
than the well-known systematics just mentioned.
The potentially largest systematic is the diffraction
phaseF0, whichwe have studied in previous work
(12, 13). It is causedprimarily by off-resonantBragg
scattering in the third and fourth laser pulse,
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Fig. 3. Data analysis. (A) Fluorescence signals of the atom clouds as they
fall through the detection region, after the interferometer sequence, for
varying number N of Bloch oscillations, measured with fixed laser power
and acceleration of the atoms during Bloch oscillations. For visibility, a
vertical offset has been applied to each trace. The four outer peaks
correspond to the four outputs A to D (Fig. 2) of the interferometers. Atoms
left behind by the Bloch oscillations form the central peaks; they do not
contribute to the measurement. T = 5 ms for these data sets. (B) Outputs of

each interferometer are normalized and plotted parametrically: the x axis is
(C − D)/(C + D) and the y axis is (A − B)/(A + B) (A to D are defined in Fig. 2).
This produces an ellipse, which is fitted to extract the differential phase.The
ellipses shown are for n = 5, N = 125, and T = 5, 20, 40, and 80 ms (for a total
interferometer phase of >10 Mrad), respectively. (C) Data sets used in the
determination of a. The pink band represents the overall ±1s statistical error.
The reduced c2 for the combined data is 1.2, with a P value of 0.2. !a is the
weighted average of the measurements. Error bars indicate 1s uncertainty.
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Error Budgets
splitters for the matter waves; these processes
increase the recoil energy by a factor of 25 rela-
tive to standard two-photon Raman processes (11).
To accelerate the atoms by up to another 800ℏk
(400ℏk up, 400ℏk down), we applied a matter-
wave accelerator: Atoms were loaded into an
optical lattice, a standing wave generated by two
laser beams, which was accelerated by ramping
the frequency of the lasers (Bloch oscillations)
(7, 12). Coriolis force compensation suppressed
the effect of Earth’s rotation. In addition, we ap-

plied ac Stark shift compensation (13, 14) and dem-
onstrated a spatial-filtering technique to reduce
sources of decoherence, further enhance the sen-
sitivity, and suppress systematic phase shifts. An
end-to-end simulation of the experimentwas run
(12) to help us identify and reduce systematic
errors and confirm the error budget. To avoid
possible bias, we adopted a blindmeasurement
protocol, which was unblinded only at the end.
Combining with precise measurements of the
cesium (15) and electron (16) mass, we found

a−1 = 137.035999046(27)

with a statistical uncertainty of 0.16 ppb and a
systematic uncertainty of 0.12 ppb (0.20 ppb total).
Our result is a more than threefold improve-
ment over previous direct measurements of a
(7). The measurement of h/mCs = 3.0023694721
(12) × 10−9 m2/s also provides an absolute mass
standard in the context of the proposed new defi-
nition of the kilogram (10). This proposed defini-
tion will assign a fixed numerical value to Planck’s
constant, to which mass measurements could then
be linked through measurements of h/mAt, such
as this one, via Avogadro spheres. Our result
agrees with previous recoil measurements (7)
within 1s uncertainty and has a 2.5s tension with
measurements (4–6) based on the gyromagnetic
moment.
Our matter-wave interferometer is based on

the one described in (12), in which cesium atoms
are loaded in a magneto-optical trap, launched
upward in an atomic fountain, and detected as
they fall back down—the interferometer sequence
occurs during the parabolic flight. Figure 2 shows
the trajectories of an atom wave packet in our
experiment, formed by impulses from pairs of
vertical, counterpropagating laser pulses on the
atoms. Each pulse transfers the momentum of
2n = 10 photons (where n is the order of Bragg
diffraction) with near 50% probability by multi-
photonBragg diffraction, acting as a beam splitter
for matter waves. Bragg diffraction allows for
large momentum transfer at each beam splitter,
creating a pair of atom wave packets that sep-
arate with a velocity of ~35 mm/s. After a time
interval T, a similar pulse splits the wave packets
again, creating one pair that moves upward and
one that moves down.
The third and fourth pulses recombine the

respective paths to form two interferometers.
Between the second and the third pulses, we
accelerated the atom groups further from one
another, using Bloch oscillations in accelerated
optical lattices, to increase the sensitivity and
suppress systematic effects. This transfers þ2Nℏk
of momentum to the upper interferometer and
"2Nℏk to the lower interferometer (N, num-
ber of Bloch oscillations) (13).
The phase difference between the interferom-

eter arms arises as a result of the kinetic energy
ðℏkÞ2=ð2mCsÞ that the atoms gain from the recoil
momentum of the photon-atom interactions and
from the phase transferred during the atoms’ in-
teraction with the laser beams. Taking the phase
difference between the two interferometers cancels
effects due to gravity and vibrations. In the absence
of systematic effects, the overall phase F of the in-
terferometer geometry shown in Fig. 2 is given by
(12, 17)

F ¼ Df1 " Df2 ¼ 16nðnþ NÞwrT " 2nwmT

where Df1;2 are the measured phases of the two
interferometers individually, wr ¼ ℏk2=ð2mCsÞ
is the photon recoil frequency, T is the time be-
tween the laser pulses, and wm is the laser fre-
quency difference we choose to apply between
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Fig. 2. Simultaneous
conjugate atom interfer-
ometers. Solid lines
denote the atoms’ trajec-
tories; dashed lines repre-
sent laser pulses with
their frequencies indi-
cated. jni denotes a
momentum eigenstate
with momentum 2nℏk. BO,
Bloch oscillations. In this
figure, gravity is
neglected. A to D repre-
sent interferometer
outputs.

Table 1. Error budget. For each systematic effect, more discussion can be found in the listed
section of the supplementary materials. N/A, not applicable.

Effect Section da/a (ppb)

This study
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Laser frequency 1 –0.24 ± 0.03
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Acceleration gradient 4A –1.79 ± 0.02
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Gouy phase 3 –2.60 ± 0.03
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Beam alignment 5 0.05 ± 0.03
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Bloch oscillation light shift 6 0 ± 0.002
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Density shift 7 0 ± 0.003
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Index of refraction 8 0 ± 0.03
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Speckle phase shift 4B 0 ± 0.04
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Sagnac effect 9 0 ± 0.001
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Modulation frequency wave number 10 0 ± 0.001
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Thermal motion of atoms 11 0 ± 0.08
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Non-Gaussian waveform 13 0 ± 0.03
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Parasitic interferometers 14 0 ± 0.03
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Total systematic error All previous –4.58 ± 0.12
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Statistical error N/A ±0.16
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Other studies
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Electron mass (16) N/A ±0.02
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Cesium mass (6, 15) N/A ±0.03
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Rydberg constant (6) N/A ±0.003
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Combined result
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Total uncertainty in a N/A ±0.20
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .
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experimental measurement ae,exp (ref. 9) gives δae = ae,exp− ae(αLKB2020) 
= (4.8 ± 3.0) × 10−13 (+1.6σ), whereas comparison with caesium recoil 
measurements gives δ′ae = ae,exp − ae(αBerkeley) = (−8.8 ± 3.6) × 10−13 (−2.4σ). 
The uncertainty on δae is dominated by ae,exp.

Discussion
Our measurement sets additional limits on theories beyond the stand-
ard model that lead to a contribution to ae. Using a Bayes method24, 
our result implies that for a theory with positive δae, we can reject 
δae > 9.8 × 10−13 with a 95% confidence level, and for a theory with nega-
tive δae, we can reject δae < −3.4 × 10−13 with a 95% confidence level.

For example, our result modifies the limits on a possible substructure 
within the electron. If the electron is composed of constituent particles 
of mass m* bound together by some unknown attraction, its natural 
size should be R = ħ/(m*c) and its magnetic moment would be modified 
by δae ≈ me/m* using the simplest analysis. According to the chirally 
invariant model25, our result excludes regions with m* < 520 GeV/c2 or 
R > 4 × 10−19 m with a confidence level of 95%. These are stringent limits 
set by low-energy experiments, although they are not yet at the limits 
of the Large Electron–Positron collider (the largest electron–positron 
collider available today)26.

Moreover, our result sets the stage for testing whether the persis-
tent discrepancy of 3.6σ between the experimental value5 and the 
standard-model prediction of the magnetic moment of the muon27,28 
(aµ) exists for electrons. If this discrepancy (δaµ) is the signature of new 
physics, similar effects could be observable for electrons. Using naive 
scaling, the effects on the electron would be of the order of (me/mµ)2δaµ 
(ref. 6), where mµ is the mass of the muon. Figure 4a summarizes the over-
all contributions of experiments involved in the determination of δae. We 
also include the largest theoretical contributions from the fifth order of 
the QED series and the hadronic term. The dominant contribution comes 
from the direct measurement of the electron moment anomaly, ae,exp. For 
the first time, the contribution of the recoil measurement (h/m) is at the 
level of (me/mµ)2δaµ ≈ 6.5 × 10−14, the value of δae deduced from the naive 
scaling (horizontal green bar). In the next years, improvement of one 

order of magnitude is expected for the accuracy of the measurement of 
ae,exp (ref. 29); it will then be possible to probe physics beyond the standard 
model with comparable information from both the electron and muon.
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Fig. 3 | Data analysis. a, Typical set of four spectra recorded by inverting the 
directions of the Raman and Bloch beams for TR = 20 ms and NB = 500. Each 
spectrum displays the variation of the relative atomic population with respect 
to the parameter δωR. The lines are least-squares fits used to determine the 
position of the central fringe displayed on the top of each spectrum. b, Allan 
deviation σα of the measurement of the fine-structure constant α at maximum 
sensitivity (TR = 20 ms, NB = 500) as a function of the integration time τ. The line 
corresponds to σ τ τ( ) = 3 × 10 /α

−10 , with τ expressed in hours. Error bars 

indicate 1σ uncertainties. c, Datasets used to determine the value of the 
fine-structure constant, α. Data are obtained by changing the following 
experimental parameters: the pulse separation time, TR, the number of Bloch 
oscillations, NB, and their total duration, τB. The circles and diamonds 
correspond to two different laser intensities during the π/2 pulses of the 
interferometer. Error bars denote ±1σ and are estimated from the standard 
deviation of the mean. The blue band represents the overall the ±1σ standard 
deviation. The reduced χ2 for the combined data is 1.4.

Table 1 | Error budget on α

Source Correction (×10−11) Relative uncertainty (×10−11)

Gravity gradient −0.6 0.1

Alignment of the beams 0.5 0.5

Coriolis acceleration 1.2

Frequencies of the lasers 0.3

Wave-front curvature 0.6 0.3

Wave-front distortion 3.9 1.9

Gouy phase 108.2 5.4

Residual Raman light shift 2.3 2.3

Index of refraction 0 <0.1

Internal interaction 0 <0.1

Light shift (two-photon 
transition)

−11.0 2.3

Second-order Zeeman 
effect

0.1

Phase shifts in Raman 
phase-lock loop

−39.8 0.6

Global systematic effects 64.2 6.8
Statistical uncertainty 2.4
Relative mass of 87Rba: 86.9091805310(60) 3.5

Relative mass of the electronb: 
5.48579909065(16) × 10−4

1.5

Rydberg constantb: 10,973,731.568160(21) m−1 0.1

Total: α−1 = 137.035999206(11) 8.1

For each systematic effect, more discussion can be found in Methods. 
aFrom ref. 13. 
bFrom https://pml.nist.gov/cuu/Constants/.
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accuracy on α by a factor of 2.5 over the previous caesium recoil meas-
urement3 but, most notably, it reveals a 5.4σ difference from this latest 
measurement.

We built a dedicated experimental setup and implemented robust 
methods to control systematic effects. By accelerating atoms up to 
6 m s−1 in 6 ms and using typical two-photon Raman transitions as beam 
splitters for the matter waves, we obtained a relative sensitivity on 
the recoil velocity of 0.6 ppb in 1 h of integration (0.3 ppb on α). This 
sensitivity is more than three times better than that obtained using 
the best atom interferometer based on multi-photon beam splitters3, 
although the latter technique is expected to provide a substantial gain 
in sensitivity with respect to Raman transitions15,16.

The unprecedented sensitivity of our atom interferometer enables us 
to experimentally evaluate and mitigate several systematic biases. We 
recorded data with different experimental parameters, reinforcing the 
overall confidence of our error budget. We also implemented a Monte 
Carlo simulation that includes both the Ramsey–Bordé atom interfer-
ometer and the Bloch oscillations process. This code models precisely 
the underlying physics of our interferometer and provides an accurate 
evaluation of systematic effects, consistent with experimental results.

Experiment
Our experimental method is illustrated in Fig. 2. The basic tools of our 
experiment are Bloch oscillations in an accelerated optical lattice, 
which enable the coherent transfer of a precise number of photon 
momenta to the atoms (typically 1,000ħk), and a matter-wave inter-
ferometer that measures the phase shift due to the change in velocity 
of the atoms. As in the optical domain, atom interferometry needs 
tools to split and recombine atomic wave packets; this is accomplished 
by a sequence of light pulses. The probability of detecting atoms in a 
given internal state at the output of the interferometer is a sinusoidal 
function of the accumulated phase difference along the two paths. 
Thus, the measurement of atomic populations enables the evalua-
tion of the phase shift. Using the combination of the Ramsey–Bordé 
interferometer configuration and Bloch oscillations, the phase shift 
is proportional to the ratio h/m (ref. 17).

We produce a cold rubidium sample using an optical molasses in 
the main chamber. Then, atoms are transported to the interferom-
etry area, a 70-cm-long tube surrounded by a two-layer magnetic 

shield. The magnetic field is controlled to within 50 nT. To that end, 
we use an atomic elevator based on two Bloch oscillation pulses 
(acceleration/deceleration)17. These are performed using two vertical 
counter-propagating laser beams, the frequency difference of which is 
swept to create an accelerated standing wave. Atomic trajectories are 
precisely adjusted by controlling this frequency difference. Between 
the two Bloch oscillation pulses of the elevator, we apply two Raman 
pulses to prepare atoms in a well defined atomic internal state (see 
Fig. 2b). Raman transitions occur between the two hyperfine levels 
of the ground state of the rubidium atom and are also implemented 
using two vertical counter-propagating laser beams (with wave vectors 
k1 = −k2 and kR = k1 ≈ k2). Their frequency difference ωR is controlled to 
compensate precisely the Doppler shift induced by the accelerations 
of the atoms.

The atom interferometer is illustrated in Fig. 2c. It is implemented 
with two pairs of π/2 Raman pulses. Each pulse acts as a beam splitter by 
transferring a momentum of 2ħkR to an atom with a probability of 50%. 
The first pair creates a coherent superposition of two spatially sepa-
rated wave packets in the same internal state with the same momentum. 
The second pair recombines the two wave packets. Between the second 
and third π/2 pulses, a Bloch oscillation pulse transfers a momentum 
of 2NBħkB to both wave packets, where NB is the number of Bloch oscil-
lations. The overall phase Φ of the interferometer is given by

Φ T ε k ε
N ħk

m
gT δω φ= 2

2
− − + , (2)R R R B

B B
R LS





















where TR is the time between the π/2 pulses of each pair, T is the time 
between the first and the third π/2 pulses, g is the gravitational accelera-
tion, φLS represents the phase corresponding to parasitic atomic level 
shifts and δωR is the difference of the Raman frequencies between the 
first and the third π/2 pulses. εR and εB determine the orientation of 
Raman and Bloch lasers wave vectors, respectively.

The fluorescence signal collected in the detection zone gives the 
number of atoms in each atomic level at the output of the interferom-
eter. Atomic fringes are obtained by measuring the fraction of atoms in 
a given internal state for varying δωR. Using a mean-square adjustment, 
we calculate δωR,0, the frequency for which Φ = 0. Gravity is cancelled 
between upward (εB = 1) and downward (εB = −1) acceleration (see Fig. 2). 
Constant level shifts φLS are mitigated by inverting the direction of the 
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FIG. 1. Lowest energy levels for the combined quantum cy-

clotron and axial detection oscillator (not to scale).

The magnetron motion present in a laboratory real-

ization of a quantum cyclotron [2] is dropped in our cal-

culation because the frequency scale is smaller by about

!m/!z ⇡ 10
�3

after cooling [22]. The broadening e↵ect

from the magnetron motion is negligible, and Eqs. (5)

and (8) can in any case be naturally generalized to in-

clude it.

A QND coupling [27–29] of the two oscillators,

V = ~�c
�
a
†
c
ac +

1
2

�
(a

†
z
az +

1
2 ), . (5)

commutes with H0 and does not change the system state.

In a Penning trap with uniform field Bẑ, the shift

�c = ~eB2/(m
2
!z), (6)

comes from adding a magnetic bottle gradient [30]

�B = B2

�
z
2 � 1

2 (x
2
+ y

2
)
�
. (7)

The Eq. (5) coupling pertains when two rapidly oscillat-

ing terms average to zero.

The uncoupled states |nc, nzi are also the eigenstates

of the coupled Hamiltonian,

H = Hc +Hz + V. (8)

Because of the coupling, the energy eigenvalues

E(nc, nz) = ~!c(nc +
1
2 ) + ~!z(nz +

1
2 )

+~�c(nc +
1
2 )(nz +

1
2 ), (9)

acquire a small term that depends upon both nc and nz.

That this coupling provides the desired QND detection

can be seen by writing the energy eigenvalues as

E(nc, nz) = ~(nc +
1
2 ) + ~e!z(nz +

1
2 ). (10)

Measuring the e↵ective axial frequency

e!z = !z + �c(nc +
1
2 ), (11)

determines nc without changing the cyclotron state.

Quantum jump spectroscopy [21] can then determine the

cyclotron frequency that is needed (along with another

frequency) to determine the magnetic moment.

The undesirable and unavoidable detector backaction

can be seen by writing the energy eigenvalues as

E(nc, nz) = ~e!c(nc +
1
2 ) + ~!z(nz +

1
2 ). (12)

This formulation emphasizes that the cyclotron fre-

quency shifts from !c to

e!c = !c + �c(nz +
1
2 ). (13)

The backaction shifts the cyclotron frequency in propor-

tional to the axial energy and quantum number. Any

distribution of axial states is thereby turned into an un-

desirable distribution of e↵ective cyclotron frequencies.

A distribution of axial states arises because the ax-

ial oscillator is weakly coupled to its environment, with

a coupling constant, �z. For times larger than 1/�z,

this leads to a thermal Boltzmann distribution of axial

states. For T = 0.1 K and !z/(2⇡) = 200 MHz, the low-

est ambient temperature and typical frequency used for

measurements[1, 2], the average axial quantum number

is

n̄z =


exp

✓
~!z

kBT

◆
� 1

��1

⇡ kBT

~!z

⇡ 10. (14)

For past measurements, the e↵ective axial temperature

was actually at least 3 to 5 times higher due to the

elevated temperature of the electronics used to detect

the axial oscillation and its frequency[2]. The broad cy-

clotron linewidth that resulted because of the detection

backaction limited the accuracy of the measurements.

The cyclotron motion also weakly couples to the ther-

mal reservoir, with a coupling �c. A state |nci radiates

synchrotron radiation at a rate nc�c. In principle, cy-

clotron states can also absorb blackbody radiation, but at

0.1 K and !c/(2⇡) = 150 GHz[1], the number of available

blackbody photons is negligible. The average quantum

number for a Boltzmann distribution of states is

n̄c =


exp

✓
~!c

kBT

◆
� 1

��1

= 1.2⇥ 10
�32 ⇡ 0. (15)

The cyclotron motion thus remains in its nc = 0 ground

state [21] unless a cyclotron driving force is applied.

A cyclotron drive adds the Hamiltonian term

Vc(t) =
1
2~⌦c

h
a
†
c
e
�i(!c+✏c)t + ace

i(!c+✏c)t
i
. (16)

The drive strength is given by the angular Rabi fre-

quency, ⌦c, and the drive is detuned from resonance at

!c by a detuning ✏c. For measurements, the driving force

provided by 150 GHz microwaves injected into a trap cav-

ity excites the |0, nzi states to |1, nzi. Higher cyclotron

states can be neglected because it is less probable to ex-

cite from small population in an excited state, but also

because a relativistic shift keeps the cyclotron transitions

between excited states o↵ resonance from the drive [31].
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Error source of electron g-2

BackacFon from the axial moFon detecFon to 
the electron 2

Fig. 3 represents the lowest cyclotron and spin energy
levels for an electron weakly confined in a vertical mag-
netic field Bẑ and an electrostatic quadrupole potential.
The latter is produced by biasing the trap electrodes of
Fig. 2. The measured cyclotron frequency f̄c ⇡ 149 GHz
(blue in Fig. 3) and the measured anomaly frequency
⌫̄a ⇡ 173 MHz (red in Fig. 3) mostly determine g/2 [2]

g

2
' 1 +

⌫̄a � ⌫̄2z/(2f̄c)

f̄c + 3�/2 + ⌫̄2z/(2f̄c)
+

�gcav
2

, (2)

with only small adjustments for the measured axial fre-
quency ⌫̄z ⇡ 200 MHz, the relativistic shift �/⌫c ⌘
h⌫c/(mc2) ⇡ 10�9, and the cavity shift �gcav/2. The
latter is the fractional shift of the cyclotron frequency
caused by the interaction with radiation modes of the
trap cavity. The Brown-Gabrielse invariance theorem [9]
has been used to eliminate the e↵ect of both quadratic
distortions to the electrostatic potential, and misalign-
ments of the trap electrode axis with B. Small terms of
higher order in ⌫̄z/f̄c are neglected.

Quantum jump spectroscopy determines f̄c and ⌫̄a.
For each of many trials the system is prepared in the
spin-up ground state, |n = 0,ms = 1/2i, after which the
preparation drives and detection amplifier are turned o↵
for 1 s. Either a cyclotron drive at a frequency near to f̄c,
or an anomaly drive at frequency near ⌫̄a, is then applied
for 2 s. The amplifier and a feedback system are turned
on to provide QND detection of either a one-quantum
cyclotron excitation or a spin flip. Cavity-inhibited spon-
taneous emission makes the cyclotron excitation persist
long enough to allow such detection. Fig. 4 shows the
fraction of the trials for which excitations were detected.

The cyclotron drive is microwave radiation injected
into the trap cavity through a cold attenuator to keep
black body photons from entering the trap. The anomaly
drive is an oscillatory potential applied to electrodes at
frequencies near ⌫̄a to drive o↵-resonant axial motion
through the magnetic bottle gradient from two nickel
rings (Fig. 2). The electron, radially distributed as a cy-
clotron eigenstate, sees an oscillating magnetic field per-
pendicular to B as needed to flip its spin, with a gradient
that allows a simultaneous cyclotron transition [10]. To
ensure that the electron samples the same magnetic vari-
ations while ⌫̄a and f̄c transitions are driven, both drives
are kept on with one detuned slightly so that only the
other causes transitions. Low drive strengths keep tran-
sition probabilities below 20% to avoid saturation e↵ects.

QND detection of one-quantum changes in the cy-
clotron and spin energies takes place because the mag-
netic bottle shifts the oscillation frequency of the self-
excited axial oscillation as �⌫̄z ⇡ 4 (n+ms) Hz. After a
cyclotron excitation, cavity-inhibited spontaneous emis-
sion provides the time needed to turn on the electronic
amplification and feedback, so the SEO can reach an os-
cillation amplitude at which the shift can be detected [6].
An anomaly transition is followed by a spontaneous de-
cay to the spin-down ground state, |n = 0,ms = �1/2i,
and the QND detection reveals the lowered spin energy.
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FIG. 4. Quantum-jump spectroscopy lineshapes for cyclotron
(left) and anomaly (right) transitions, with maximum like-
lihood fits to broadened lineshape models (solid), and inset
resolution functions. Vertical lines show the 1-� uncertain-
ties for extracted resonance frequencies. Corresponding un-
broadened lineshapes are dashed. Gray bands indicate 68%
confidence limits for distributions about broadened fits.

The expected lineshapes arise from the thermal axial
motion of the electron through the magnetic bottle gra-
dient. The axial motion is cooled by a resonant circuit in
about 0.2 s to as low as Tz = 230 mK (from 5 K) when the
detection amplifier is o↵. For the cyclotron motion these
fluctuations are slow enough that the lineshape is essen-
tially a Boltzmann distribution with a width proportional
to Tz [11]. For the anomaly resonance, the fluctuations
are e↵ectively more rapid, leading to a resonance shifted
in proportion to Tz.
The weighted averages of ⌫̄a and f̄c from the lineshapes

(indicated by the abscissa origins in Fig. 4) determine g/2
via Eq. 2. With saturation e↵ects avoided, these pertain
to the magnetic field averaged over the thermal motion.
It is crucial that any additional fluctuations in B that
are symmetric about a central value will broaden such
lineshapes without changing the mean frequency.
To test this weighted mean method we compare max-

imum likelihood fits to lineshape models (Fig. 4). The
data fit well to a convolution (solid curve) of a Gaus-
sian resolution function (solid inset curve) and a thermal-
axial-motion lineshape [11] (dashed curve). The broad-
ening may arise from vibrations of the trap and electron
through the slightly inhomogeneous field of the external
solenoid, or from fluctuations of the solenoid field itself.
Because we have not yet identified its source we add a
“lineshape” uncertainty based upon the discrepancy (be-
yond statistical uncertainty) between the g/2 values from
the mean and fit for the four measurements. To be cau-
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[17] for the details of the calculation.

line resonator (Sec. III) shows that the HEMT based
switch has low enough loss to detect a single particle
and high enough suppression on �z. The suppression of
�z is demonstrated with trapped electrons. With these
demonstrations, the newly developed detector is able

to reduce �z enough while maintaining single-particle-
detection sensitivity.
According to recent calculations [17], the demonstrated

switchable detection circuit should dramatically change
the cyclotron resonance lineshape that must be observed
to measure the electron and positron magnetic moments.
The dashed lineshape is what would be observed if the
detection circuit was not switched, as in completed ex-
periments [2, 32]. The dramatically di↵erent series of
resonances (solid) is what is expected when the detec-
tion circuit demonstrated here is switched on. The broad
and asymmetric resonance (dashed) turns into a series of
extremely narrow and symmetric peaks, each of which
corresponds to an individual quantum state of the axial
motion. The linewidth is reduced by about two orders
of magnitude. The details of how the detection circuit
is used to observe cyclotron resonance is well beyond the
scope of this report and is discussed in [17]. The line-
shapes illustrate the great importance of a switchable
detection circuit for the most accurate measurements of
a property of an elementary particle, made to test the
most precise prediction of the standard model of particle
physics.

V. CONCLUSIONS

A 200 MHz detection circuit that can be switched be-
tween high and low resistive impedance levels has been
developed for use at cryogenic temperatures as low as
0.1 K. The switchable detection and damping circuit is
demonstrated by using it to change the damping rate
for the axial, center-of-mass motion of trapped electrons.
The change in the damping rate for a single electron will
be about a factor of 100 for the demonstrated circuit. Ac-
cording to a recent calculation, being able to switch the
damping rate by this factor will make it possible to evade
the detector backaction that limited the accuracy of ear-
lier measurements by producing broad and asymmetric
cyclotron resonances. The switchable detection circuit
thus promises to revolutionize electron and positron mag-
netic moment measurements made to test the most pre-
cise predictions of the standard model of particle physics.
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QED results up to the 10th-order

Version February 15, 2019 submitted to Atoms 7 of 43

Table 1. QED contributions to the electron anomalous magnetic moment ae. The
coefficients of (a/p)n, A

(2n)
i

, where n denotes the 2nth order of the perturbation
theory of QED, are listed. No input parameter is used to compute A

(2n)
1 , while

the electron-to-muon mass ratio me/mµ = 0.483 633 170 (11)⇥10�2[40] and the
electron-to-tau mass ratio me/mt = 0.287 585 (19)⇥10�3 [41] are used for A

(2n)
2

and A
(2n)
3 . The assigned uncertainties for the fourth, sixth, and eighth-order

mass-dependent terms come from the lepton-mass ratios. The uncertainties of
the tenth-order terms are due to numerical integration. The tau-lepton contributions
to the tenth-order term have not yet been calculated, but they are suppressed by the
factor (mµ/mt)2 compared with the muon contributions.

Coefficient A
(2n)
i

Value (Error) References
A
(2)
1 0.5 [5]

A
(2)
2 (me/mµ) 0

A
(2)
2 (me/mt) 0

A
(2)
3 (me/mµ, me/mt) 0

A
(4)
1 �0.328 478 965 579 193 · · · [22,23]

A
(4)
2 (me/mµ) 0.519 738 676 (24)⇥10�6 [26]

A
(4)
2 (me/mt) 0.183 790 (25)⇥10�8 [26]

A
(4)
3 (me/mµ, me/mt) 0

A
(6)
1 1.181 241 456 587 · · · [24,32]

A
(6)
2 (me/mµ) �0.737 394 164 (24)⇥10�5 [27–30]

A
(6)
2 (me/mt) �0.658 273 (79)⇥10�7 [27–30]

A
(6)
3 (me/mµ, me/mt) 0.1909 (1)⇥10�12 [42]

A
(8)
1 �1.912 245 764 · · · [25,38]

A
(8)
2 (me/mµ) 0.916 197 070 (37)⇥10�3 [31,34]

A
(8)
2 (me/mt) 0.742 92 (12)⇥10�5 [31,34]

A
(8)
3 (me/mµ, me/mt) 0.746 87 (28)⇥10�6 [31,34]

A
(10)
1 6.737 (159) new,[39]

A
(10)
2 (me/mµ) �0.003 82 (39) [34,38]

A
(10)
2 (me/mt) O(10�5)

A
(10)
3 (me/mµ, me/mt) O(10�5)

In order to obtain the theoretical prediction of ae, however, we need the input139

parameter determined from measurements of the nature. QED itself cannot determine140

what the fine-structure constant a is. Its value can only be derived from measurements.141

The quantum Hall resistance, which is named as the von Klitzing constant RK = h/e
2,142

used to be the best method to determine the value of a. But, the current best is to use143

Uncertainty comes from
muon-electron mass raWo
tau-electron mass raWo 

Uncertainty comes from
numerical integraWon



8th-order calculaJon A1
(8)

I(a) I(b) I(c) I(d) II(a) II(c)II(b)

III IV(a) IV(b) IV(c) IV(d) V

<latexit sha1_base64="qrZGHBLMs4KGYhGsfMrSqZXZUyA="></latexit>

Laporta (2017) �1.912 245 764 · · ·
AHKN (2015) �1.912 98 (84)

Marquard et al. (2017) �1.87 (12)

<latexit sha1_base64="lzTsutitjofKif3TBc4c1g1/yIY="></latexit>

Laporta (2017) �2.176 886 02 · · ·
AHKN (2015) �2.177 33 (82)

Volkov (2018) �2.1790 (22)

All 891 diagrams

518 diagrams of Set V

Hardest to compute

• 8th-order is established
• The numerical calculation 

methods are  confirmed.



10th-order calculaJon A1
(10)

I(a) I(b) I(c) I(d) I(e)

I(f) I(g) I(h) I(i) I(j)

II(a) II(b) II(c) II(d) II(e)

II(f) III(a) III(b) III(c) IV

V VI(a) VI(b) VI(c) VI(d) VI(e)

VI(f) VI(g) VI(h) VI(i) VI(j) VI(k)

12,672 vertex diagrams  
Some of them are doubly checked    

Baikov et al. 2013
Laporta et al.  1994

✔ ✔ ✔ ✔ ✔

✔ ✔ ✔ ✔ ✔

✔ ✔ △ △

△ △ △ △

△ △ △ △

△ △

✔
Independent check 
confirms the result

Easy extension from
the computer programs for 
the 8th-order diagrams

△

6354 vertex diagrams of this type are the hardest ones to evaluate



Two results of A1
(10)[Set V]

4.8σ tension!
Is a meaningful difference?

No.  The uncertainty of  the current experiment:

Yes. Soon,  the NW team will reduce the uncertainty to 

<latexit sha1_base64="keptgkODh/J+Cg519EYqlUNhdG8="></latexit>

AHKN (2018) 7.668 (159)

Volkov (2019) 6.793 (90)

di↵. 0.875 (183)

<latexit sha1_base64="uHl8CjJeJsrfXCa1VQ4oMr7B0IQ="></latexit>

�ae(HV2008) = 0.28⇥ 10
�12

<latexit sha1_base64="NdwWjyldLzkYQZ6sUSKLitx3BOA="></latexit>

0.875
⇣↵
⇡

⌘5
= 0.059⇥ 10�12

<latexit sha1_base64="GZeirwDpdnMXA5XaqNNZNss+2hA="></latexit>

�ae(NW202x) = 0.02⇥ 10�12

I must  
figure out 
the difference! 

Home Alone



Vertex sum v.s. Ward-Takahashi sum

Volkov directly calculated 3,213 vertex diagrams
AHKN calculated the Ward-Takahashi 389 sum

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Ward-Takahashi Sum 
used by AHKN

Gauge Invariant subsets 

Every verWces are calculated by Volkov
4 numerical data 

4th-order 

2 numerical data

<latexit sha1_base64="ayUW39FACOxjYuCNk8FC7KcAIlU="></latexit>

M4a

<latexit sha1_base64="rNhNnPOPRpgVsdFSVowLYb15q9c="></latexit>

M4b

<latexit sha1_base64="7Gt8AJ65PEmss99Rr1W6+NVok2o="></latexit>

M4b(1)

<latexit sha1_base64="AilSNp4+52J1Qo3C8m+K9y4TSe4="></latexit>

M4b(2)

<latexit sha1_base64="m/+DUjGebiQIC2Y+jjASpw6SfN8="></latexit>

M4a(1)
<latexit sha1_base64="UNmMinU0Zye9KEBfG6tt30rAelQ="></latexit>

M4a(2)



Different renom. constants

On-shell renormalizadon constants for a self-energy diagram G:

for  vertex renormalizadon

for  wave-funcdon renormalizadon

Volkov used IR-free and gauge-invariant:   

We used IR free, easy-determined, but not gauge-invariant: 

<latexit sha1_base64="Ws4T2qMzb9giewAATvWqXAEHHDY="></latexit>

BG

<latexit sha1_base64="F2hr/Z2Yxq3iaH9rX+prDhn+P5k="></latexit>

LG(i)

<latexit sha1_base64="6vKFgo80U9J8G+r/uXFEJ7z+Rvw="></latexit>

BVG +
2n�1X

i=1

LVG(i) = 0

<latexit sha1_base64="E+Ut9o7Xrq6CFtKRGsGhZjjuXi0="></latexit>

BKG +
2n�1X

i=1

LKG(i) +�LBG = 0



<latexit sha1_base64="o8qirX2JAoStpNAm6LRTPs42Ss0="></latexit>

�L2 = LV2 � LK2

<latexit sha1_base64="9udvbJrLrS2ycTGFhgEsQl3pa2o="></latexit>

a4a = M4a � 2 L2 M2

= �M4a � 2(L2 � LK2) M2

ConnecJon b.w. Volkov and AHKN

(a) (b) (c) (d) (e)(a) (b) (c) (d) (e)

Volkov AHKN

Numerical and finite numbers  

The same physical contribuWon. This is IR divergent.

<latexit sha1_base64="e6T4iD5Wtl6IS2/hn63bukjdGzQ="></latexit>

a4a = M4a(1) + 2M4a(2) � 2 L2 M2

= �M4a(1) + 2�M4a(2) � 2(L2 � LV2) M2

<latexit sha1_base64="bxry4caqK0EDxbFzyvK9O9Gqj8k="></latexit>

�M4a � (�M4a(1) + 2�M4a(2)) = 2 �L2 M2

where

finite!



New calculation of  

Difference of renormaliza_on constants

are newly calculated for n=2,4,6,8 .   No 10th-order.
(#) …# of independent diagrams, dme-reversal symmetry

132 x  1 hour x 40 core = 5,280 core x hours, 1 night at RIKEN’s HOKUSAI-BW

very small calculadon compared to the 10th-order g-2 calculadon
Ref. One diagram evaluaQon of 10th-order g-2 requires O(10^5) core x hours

<latexit sha1_base64="PcsUHvMFSbqJBN8TnOivTTottnU=">AAACknicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvoxiSlpmfmVSfmZKbnadVyxaSk5pQkKvjEV+dpZGoC+al5KXBJrngBZQM9AzBQwGQYQhnKDFAQkC+wnCGGIYUhnyGZoZQhlyGVIY+hBMjOYUhkKAbCaAZDBgOGAqBYLEM1UKwIyMoEy6cy1DJwAfWWAlWlAlUkAkWzgWQ6kBcNFc0D8kFmFoN1JwNtyQHiIqBOBQZVg6sGKw0+G5wwWG3w0uAPTrOqwWaA3FIJpJMgelML4vm7JIK/E9SVC6RLGDIQuvC6uYQhjcEC7NZMoNsLwCIgXyRD9JdVTf8cbBWkWq1msMjgNdD9Cw1uGhwG+iCv7Evy0sDUoNkMoAgwRA9uTEaYkZ6hqZ5BoJGygxM0KjgYpBmUGDSA4W3O4MDgwRDAEAq0dzLDToZDDIeZRJismByZnCFKmRiheoQZUACTDwDbEJoz</latexit>

�Ln(i)

<latexit sha1_base64="PcsUHvMFSbqJBN8TnOivTTottnU="></latexit>

�Ln(i)

Order  n 2 4 6 8

# of vertex  
diagrams 1 6  (4) 50 (28) 518 (269)

# of diagrams
calculated so far

✔
1

✔
6  (4)

✔
50 (28)

on-going
(132)



6354 (3213) vertex diagrams represented by 706 (389) self-energy diagrams 



X001  as an example 
<latexit sha1_base64="wgyzEE8UQakNm2nx9EZU/4tHf+0="></latexit>

�MX001 �
9X

i=1

�MX001(i) = �M2 (�3(�L4a1)
2 � 6�L2�L6f1 + 12(�L2)

2�L4a1

� 5(�L2)
4 + 2�L01v1)

+�M01 (2�L2)

+�M6f (2�L4a1 � 3(�L2)
2)

+�M4a (2�L6f1 � 6�L2�L4a1 + 4(�L2)
3)

<latexit sha1_base64="JRc6qLFdyiVcBgSrJmXPpU3zthQ="></latexit>

l.h.s =� 0.16083 (334)� 0.58095 (534)

=� 0.74178 (630)

r.h.s =� 0.73854 . . .

l.h.s � r.h.s � 0.00324 (630)

X001  safely passes the numerical check.

135 of 389 have been checked. All are consistent. 

Consistently 0 !



Hadron

<latexit sha1_base64="e7F2sw/dFvYrWLFF6Sqsjq7AGyM="></latexit>

Experiment

ae(HV08) = 1 159 652 180.73 (28)

Theory

ae(↵(Cs)) = 1 159 652 181.616 (229)(11)(9) [229]

ae(↵(Rb)) = 1 159 652 180.265 (93)(11)(9) [94]

Electron g-2 Experiment v.s. Theory

Best 3 values of α
<latexit sha1_base64="YXjgmIApjvY84lR2N0i/JSHwGP0="></latexit>

↵�1(ae) = 137.035 999 150 (33) 240 ppt
↵�1(Cs18) = 137.035 999 046 (27) 200 ppt
↵�1(Rb20) = 137.035 999 206 (11) 81 ppt

Come from α solely!

10th-order 
AKHN QED

A. Keshavarzi et al. 2019
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total correction ΦDoppler +ΦSplitting is frame-invariant, and results in a correction v0/c~7 ppb to Į 

(Section 1). Because v0 can be measured by adjusting the laser frequency to find Bragg 

resonance, it is known to better than 1 part per thousand and does not introduce additional 

systematic uncertainty.  

Section 16: ge-2 Corrections and Dark Matter Limits 

The experiment in this work determines Į by measuring the ratio h/m. Another method involves 

measuring the electron gyromagnetic anomaly ge-2, which can be written as a power series in Į 

using corrections from quantum electrodynamics (QED) as:  

 e weak QCD
1

2
n

n
n

g aD D D
S�

§ ·�  � �¨ ¸
© ¹

¦   

where the coefficients an come from calculating all possible QED corrections of order 2n and the 

factors Įweak and QCD are electroweak and quantum chromodynamics corrections obtained from 

particle physics data (7). Thus a comparison of the two kinds of experiments can be used as a test 

of the standard model of particle physics. Comparison of our experimental result with the most 

precise value of ge-2 obtained through direct measurement (4) yields a negative įa = ameas – a(α) 

= -0.88(0.36) u 10-12. The relative magnitude of the different corrections that go into calculating 

ge-2 are shown in Figure S10; the two experiments have an error bar below the magnitude of the 

5th order QED correction, however the sign of the experimental discrepancy is opposite that of 

the 5th order correction.  
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Finally, the anomaly reported in the angular distribution of posi-
tron–electron pairs (e+e−) produced in 8Be nuclear transitions4 could 
be explained by the emission of a hypothetical protophobic gauge 
boson X with a mass of 16.7 MeV followed by the decay X → e+e− (ref. 30). 
The X boson is parameterized by a mixing strength ε with electrons and 
a non-zero mass mX. Figure 4b presents the exclusion space for those 
parameters. At 16.7 MeV, the upper limit of ε is set by the ge − 2 value of 
the electron and its lower limit by electron beam dump experiments 
(E14131 and NA6432 collaborations). Recently, new results from the NA64 
collaboration33 excluded ε values lower than 6.8 × 10−4. Because vector 
coupling implies δae > 0, the result from a caesium recoil experiment 
imposes strong constraints on ε; combined with the NA64 result, it 
rejects pure vector coupling of X(16.7 MeV) at 90% confidence level. By 
contrast, our measurement of α gives δae > 0 and favours pure vector 
coupling with ε = (8 ± 3) × 10−4, which could explain the 8Be anomaly.
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Fig. 4 | Impact on the test of the standard-model prediction of ae and limits on 
hypothetical X boson. a, Summary of contributions to the relative uncertainty 
on δae. The horizontal green line corresponds to the δae value obtained by taking 
into account the muon magnetic moment discrepancy and using a naive scaling 
model. Previous data from ref. 9 (Harvard 2008), ref. 18 (LKB 2011), ref. 3 (Berkeley 
2018), ref. 13 (Atomic Mass Evaluation, AME 2016), ref. 14 (Max-Planck-Institut für 
Kernphysik, MPIK 2014) and ref. 2 (RIKEN 2019). Also shown are the 10th-order and 
hadronic contributions in the calculation of the electron moment anomaly.  
b, Exclusion area in (ε, mX) space for the X boson. The grey, blue and light purple 
regions are ruled out by the E14131, NA6432 and BaBar35 experiments, respectively. 
A test based on the magnetic moment of the electron rules out the orange region 
when using the Berkeley measurement3 and the purple region when using the 
present result. Disregarding the Berkeley measurement, the remaining allowed 
range at 16.7 MeV is depicted by the thick red line. The zone favoured by δae > 0, 
as deduced from this work, is shown by grey dots.
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Electron g-2 Experiment v.s. Theory
+2.4 σ-1.6 σ

Experiment HV Theory w/ α(Cs)Theory w/ α(Rb)

Figure 9: A comparison of recent and previous evaluations of aSMµ . The analyses listed in chronolog-
ical order are: DHMZ10 [51], JS11 [52], HLMNT11 [40], FJ17 [53] and DHMZ17 [54], KNT18 [1] and
DHMZ19 [37]. The prediction from this work is listed as KNT19, which defines the uncertainty band
that other analyses are compared to. The current uncertainty on the experimental measurement [2–5]
is given by the light blue band. The light grey band represents the hypothetical situation of the new
experimental measurement at Fermilab yielding the same mean value for aexpµ as the BNL measurement,
but achieving the projected four-fold improvement in its uncertainty [6].

compared to the KNT18 analysis [1]. This change comes, in nearly equal parts, from the reduc-

tion in the mean value of ahad,LOVP
µ and the new estimate of ahad,LbLµ in this work. The increase

in the uncertainty with respect to [1] comes from the increase in the error of ahad,LbLµ owing
to the changes in the estimate of this contribution discussed previously. Together, these have
resulted in the increased discrepancy from 3.7� in the KNT18 analysis to 3.8� in this work.

3.3 The anomalous magnetic moment of the tau lepton, a⌧

In the case of the ⌧ , the determination of the LO hadronic VP contributions yields

ahad,LOVP

⌧ = (332.81± 0.47stat ± 1.09sys ± 0.17vp ± 0.69fsr)⇥ 10�8

= (332.81± 1.39tot)⇥ 10�8 , (3.11)

whilst at NLO they are found to be

ahad,NLOVP

⌧ = (7.85± 0.01stat ± 0.03sys ± 0.01vp ± 0.02fsr)⇥ 10�8

= (7.85± 0.04tot)⇥ 10�8 . (3.12)

Note that in the case of the ⌧ , the total NLO contributions are positive, while they are negative
for the electron and muon, and any estimate based on a naive mass-scaling of the result for the
muon would fail completely. The results for ahad,LOVP

⌧ from the individual hadronic channels
are given in Table 1. Comparing with the evaluation in [19], which resulted in ahad,LOVP

⌧ =

16

Muon g-2

Theory Experiment 

Same new physics 
can explain both g-2

Difficult to explain both from 
same new physics

arXiv hep-ph papers
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…
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QED contribution to muon g-2
<latexit sha1_base64="nJagO2/Nbgk4r6m3Z06VBu5TYYg="></latexit>

aµ(QED;↵(ae)) = 116 584 718.842 (7)(17)(6)(28) [34]⇥ 10�11

aµ(QED;↵(Cs)) = 116 584 718.931 (7)(17)(6)(23) [33]⇥ 10�11

aµ(QED;↵(Rb)) = 116 584 718.793 (7)(17)(6)(9) [22]⇥ 10�11

Uncertaindes 
tau-lepton mass, 8th-order QED, 10th-order QED, α, combined

Estimated 12th-order contribution is   
<latexit sha1_base64="h7mAt0M5ey0uQEfK8P7aArdPxeQ="></latexit>

±0.100⇥ 10�11

I(a) I(b) I(c) I(d) I(e)
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II(a) II(b) II(c) II(d) II(e)

II(f) III(a) III(b) III(c) IV
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VI(f) VI(g) VI(h) VI(i) VI(j) VI(k)

FIG. 5: Tenth-order vertex diagrams. There are 12,672 diagrams in total, and they are divided

into 32 gauge-invariant subsets over six super sets. Typical diagrams of each subsets are shown as

I(a–j), II(a–f), III(a–c), IV, V, and VI(a–k). There are 208 Set I diagrams (I(a) 1, I(b) 9, I(c) 9,

I(d) 6, I(e) 30, I(f) 3, I(g) 9, I(h) 30, I(i) 105, I(j) 6), 600 Set II diagrams (II(a) 24, II(b) 108, II(c)

36, II(d) 180, II(e) 180, II(f) 72), 1140 Set III diagrams (III(a) 300, III(b) 450, III(c) 390), 2072

Set IV diagrams, 6354 Set V diagrams, 2298 Set VI diagrams (VI(a) 36, VI(b) 54, VI(c) 144, VI(d)

492, VI(e) 48, VI(f) 180, VI(g) 480, VI(h) 630, VI(i) 60, VI(j) 54, VI(k) 120). The straight and

wavy lines represent lepton and photon propagators, respectively. The external photon vertex is

omitted for simplicity and can be attached to one of the lepton propagators of the bottom straight

line in super sets I–V or the large ellipse in super set VI. Reprinted from [40].
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Limits on dark vector boson 

where multiple frequencies for the Bragg beams
are used to simultaneously address both interfer-
ometers (Fig. 2). We can therefore suppress it by
using a large number N of Bloch oscillations; this
increases the velocity of the atoms and thus the
Doppler effect, moving the off-resonant com-
ponent further off resonance. It also increases the
total phase, further reducing the relative size of
the systematic. The diffraction phase is nearly
independent of the pulse-separation time T, so
we alternate between two or more (usually six)
pulse-separation times and extrapolate T→∞.
To determine the residual T-dependent diffrac-

tion phase, we employed a Monte Carlo simula-
tion and numerically propagated atoms through
the interferometer (13, 18).We ran the experiment
at several different pulse-separation times, en-
suring that there was no statistically significant
signal for any unaccounted systematic variation.
Overall, systematic errors contribute an uncer-
tainty of 0.12 ppb to the measurement of a. As
described in the supplementarymaterials, we cor-
rected for systematic effects due to spatial intensity
noise that have recently been pointed out (22)
and for systematic effects due to deviations of the
beam shape from a perfect Gaussian (18).
Figure 3C shows our data, which were collected

over the course of 7 months. Each point represents
roughly 1 day of data. The signal-to-noise ratio of
our experiment would allow reaching a 0.2-ppb
precision in less than 1 day, but extensive datawere
collected to suppress and control systematic ef-
fects. The measurement campaigns were inter-
spersed with additional checks for systematic
errors. Data sets typically include six different
pulse-separation times, but nine data sets in-
clude only three different pulse-separation times
and four data sets include four different pulse-
separation times, repeated in ~15-min bins; the

fit algorithm allows each bin of data to have a
different diffraction phase (as the various exper-
imental parameters may drift slowly over time)
but assumes one value of h/mCs for the entire
data set.
By combining our measurement with theory

(5, 6), we calculated the Standard Model predic-
tion for the anomalous magnetic moment of the
electron as

aðaÞ ¼ ge
2
$ 1 ¼ 0:00115965218161ð23Þ

Comparison with the value obtained through di-
rect measurement (ameas) (4) yielded a negative
da = ameas – a(a) = −0.88(0.36) × 10−12. Com-
parison of our result to previous measurements
of a (Fig. 1) produced an error bar below the
magnitude of the fifth-order quantum electro-
dynamics calculations used in the extraction of
a from the electron ge − 2measurement and thus
allows us to confront these calculations with
experiment.
In addition, our measurement can be used

to probe a possible substructure within the elec-
tron. An electron whose constituents have mass
m∗≫me would result in a modification of the
electron magnetic momentum by da∼me=m∗.
In a chirally invariant model, the modification
scales as da∼ ðme=m∗Þ2. Following the treatment
in (23), the comparison jdaj of this measurement
of a with the electron ge − 2 result places a limit to
a substructure at a scale ofm∗ > 411;000 TeV=c2

for the simple model andm∗ > 460 GeV=c2 for
the chirally invariant model (improvements over
the previous limits of m∗ > 240;000 TeV=c2 and
m∗ > 350 GeV=c2, respectively).
Precision measurements, such as ours, of a

can also aid in the search for new dark-sector
(or hidden-sector) particles (18). A hypothetical

dark photon, which is parameterized by a mix-
ing strength D and a nonzero mass mV, for ex-
ample, would lead to a nonzero da that is a
function of D and mV (24). We can test the ex-
istence of dark photons by comparing our data
with the electron ge − 2 measurement (4). The
blue area in Fig. 4A shows the parameter space
that is inconsistent with our data. We note that
dark photons cause a da > 0, opposite to the sign
measured in both our experiment and the ru-
bidium measurement (7). With the improved er-
ror of our measurement, this tension has grown.
A model consisting of the Standard Model and
dark photons of any mV or D is now incompat-
ible with the data at up to a 99% confidence
level (CL). Constraints on the theory obtained
in this fashion (Fig. 4A) include regions not pre-
viously bounded by accelerator experiments and
do not depend on the assumed decay branching
ratios of the dark photon.
By contrast, a dark axial vector boson charac-

terized by an axial vector coupling cA and mass
mA is favored by the data because it would lead
to a negative da, but we emphasize that the 2.5s
tension in the data is insufficient to conclude the
existence of a new particle (Fig. 4B). The dis-
crepancy between the twomethods ofmeasuring
a could be a hint of possible physics beyond the
Standard Model that warrants further investiga-
tion. The calculated da places limits on the axial
vector parameter space from two sides. The al-
lowed region is partially ruled out by other exper-
iments. However, the region of parameter space
consistent with our result and anomalous pion
decay is also consistent with current accelerator
limits, and thus the remaining region of param-
eter space warrants further study (24).
In particular, dark photons are one proposed

explanation for the 3.4s discrepancy in themuon
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and coupling suppressed by the factor D. The shaded orange and blue
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ae (4–6) with that predicted by our a measurement and the LKB-11 result,
respectively (significance levels have been calculated for a one-tailed
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explained by a dark photon. Because our measured da is negative, our
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Finally, the anomaly reported in the angular distribution of posi-
tron–electron pairs (e+e−) produced in 8Be nuclear transitions4 could 
be explained by the emission of a hypothetical protophobic gauge 
boson X with a mass of 16.7 MeV followed by the decay X → e+e− (ref. 30). 
The X boson is parameterized by a mixing strength ε with electrons and 
a non-zero mass mX. Figure 4b presents the exclusion space for those 
parameters. At 16.7 MeV, the upper limit of ε is set by the ge − 2 value of 
the electron and its lower limit by electron beam dump experiments 
(E14131 and NA6432 collaborations). Recently, new results from the NA64 
collaboration33 excluded ε values lower than 6.8 × 10−4. Because vector 
coupling implies δae > 0, the result from a caesium recoil experiment 
imposes strong constraints on ε; combined with the NA64 result, it 
rejects pure vector coupling of X(16.7 MeV) at 90% confidence level. By 
contrast, our measurement of α gives δae > 0 and favours pure vector 
coupling with ε = (8 ± 3) × 10−4, which could explain the 8Be anomaly.
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Be more careful 

Searching   

new physics  interactable with a photon via

• new physics appears in free muon  and electron (g-2)’s 

• new physics appears in Coulomb binding atoms
Rydberg constant

• new physics appears in the magnedc cyclotron binding
masses of pardcles

• is probably insensidve to  new physics
kinemadcal determinadon, Cs and Rb 
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Summary

• New α from the atom interferometer is explained.

• Progress in electron g-2, both expt. and theory, is 
explained.

• ``Comparison”  is discussed.
three α’s ,     electron g-2 expt. and theory

• In near future, ``comparison” will be performed 
at a few ppt level. 


