Consistency of the hadronic vacuum polarization between lattice QCD and the R-ratio

Christoph Lehner (Regensburg & BNL)

Akimas

Tsut

nobu

May 19, 2021 - KEK-PH

Chris

I

The role of the hadronic vacuum polarization for the muon g-2

What is a muon?

- ► Elementary point-like particle
- ► Same electric charge as an electron
- Approximately 200 times heavier than an electron
- Like the electron, behaves as if it was intrinsically spinning about a vector \vec{S}

These properties combine to give it a magnetic moment

$$\vec{\mu} = \mathbf{g} \left(\frac{\mathbf{e}}{2m} \right) \vec{S}_{\scriptscriptstyle \mathrm{I}}$$

such that when put in a magnetic field, it exhibits precession similar to a spinning top.

We can measure this precession very precisely.

The magnetic moment and quantum corrections

The g-factor in $\vec{\mu} = \mathbf{g}\left(\frac{e}{2m}\right)\vec{S}$ describes the strength of coupling to a magnetic field, which can be computed from theory also **very** precisely.

Dirac:
$$g=2$$

$$a=(g-2)/2$$

$$g>2$$

$$quantum effects$$

The quantum effects arise from virtual particle contributions from all known and unknown particles.

By comparing high-precision experiments and theory, we have the potential to learn about such contributions of new particles.

Contributions from known particles: The Standard Model

Open questions: dark matter, size of matter-antimatter asymmetry, origin of neutrino masses, $... \Rightarrow$ Standard Model is incomplete

Contributions from known particles: The Standard Model

$$a_{\mu}(\mathsf{SM}) = a_{\mu}(\mathsf{QED}) + a_{\mu}(\mathsf{Weak}) + a_{\mu}(\mathsf{Hadronic})$$

Numbers from Theory Initiative Whitepaper

Uncertainty dominated by hadronic contributions

Status of hadronic light-by-light contribution

Systematically improvable methods are maturing; uncertainty to a_μ controlled at 0.15ppm; cross-checks detailed in Theory Initiative whitepaper

Status and impact of hadronic vacuum polarization contribution

Ab-initio lattice QCD(+QED) calculations are maturing

Difficult problem: scales from $2m_\pi$ to several GeV enter; cross-checks needed at high precision

Hybrid window method restricts scales that enter from lattice/dispersive data

Dispersive, $e^+e^- \rightarrow \text{hadrons}$ (20+ years of experiments)

Now first published lattice result with sub-percent precision available (BMW20), cross-checks are crucial to establish or refute high-precision lattice methodology (same situation as for HLbL)

Summary of HVP status:

- ▶ Decades of e^+e^- dispersive results suggest a strong tension (4.2 σ)
- ► A single lattice result (BMW20) suggests only minimal tension (1.5σ)

How can we move forward in our understanding? Main topic of this talk.

Two main questions:

- Consistency of BMW20 lattice result with previously know lattice results
- Consistency of lattice results with R-ratio

Consistency of BMW20 lattice result with previously know lattice results

Diagrams

Christ

lsospin limit

QED corrections

Strong isospin breaking

M (b) R

(d) O

Christ

Diagrams - Isospin limit

FIG. 1. Quark-connected (left) and quark-disconnected (right) diagram for the calculation of $a_{\mu}^{\rm HVP\ LO}$. We do not draw gluons but consider each diagram to represent all orders in QCD.

Ξ

Page 13 of 56

9 / 31

Strange

Consistency of BMW20 lattice result with previously know lattice results

I

Some tensions to be understood

10 / 31

Diagrams - QED corrections

For diagram F we enforce exchange of gluons between the quark loops as otherwise a cut through a single photon line would be possible. This single-photon contribution is counted as part of the HVP NLO and not included for the HVP LO.

Attention needed

Diagrams - Strong isospin breaking

For the HVP R is negligible since $\Delta m_u \approx -\Delta m_d$ and O is SU(3) and $1/N_c$ suppressed.

Lehner, Meyer 2020: NLO PQChPT: FV effects in connected and disconnected cancel but are each significant $O(4\times 10^{-10})$; PQChPT expects cancellation between connected and disconnected contribution $a_{\mu}^{\rm SIB,\ conn.}=-a_{\mu}^{\rm SIB,\ disc.}=6.9\times 10^{-10}$

Lattice QCD - Time-Moment Representation

Starting from the vector current $J_{\mu}(x) = i \sum_{f} Q_{f} \overline{\Psi}_{f}(x) \gamma_{\mu} \Psi_{f}(x)$ we may write

$$a_{\mu}^{\mathrm{HVP\ LO}} = \sum_{t=0}^{\infty} w_t C(t)$$

with

$$C(t) = rac{1}{3} \sum_{ec{x}} \sum_{j=0,1,2} \langle J_j(ec{x},t) J_j(0)
angle$$

and w_t capturing the photon and muon part of the HVP diagrams (Bernecker-Meyer 2011).

The correlator C(t) is computed in lattice QCD+QED at physical pion mass with non-degenerate up and down quark masses including up, down, strange, and charm quark contributions. The missing bottom quark contributions are computed in pQCD.

Lattice QCD – Example of correlation function C(t) (RBC/UKQCD18)

Ξ

Large discretization errors at short distance, large finite-volume errors and statistical errors at large distance

17 / 31

Window method (introduced in RBC/UKQCD 2018)

We therefore also consider a window method. Following Meyer-Bernecker 2011 and smearing over t to define the continuum limit we write

$$a_{\mu}= extbf{a}_{\mu}^{ ext{S}}\dot{ ext{D}}+ extbf{a}_{\mu}^{ ext{W}}+ extbf{a}_{\mu}^{ ext{LD}}$$

with

$$egin{aligned} a_{\mu}^{\mathrm{SD}} &= \sum_t \mathcal{C}(t) w_t [1-\Theta(t,t_0,\Delta)]\,, \ a_{\mu}^{\mathrm{W}} &= \sum_t \mathcal{C}(t) w_t [\Theta(t,t_0,\Delta)-\Theta(t,t_1,\Delta)]\,, \ a_{\mu}^{\mathrm{LD}} &= \sum_t \mathcal{C}(t) w_t \Theta(t,t_1,\Delta)\,, \ \Theta(t,t',\Delta) &= \left[1+ anh\left[(t-t')/\Delta
ight]\right]/2\,. \end{aligned}$$

All contributions are well-defined individually and can be computed from lattice or R-ratio via $C(t)=\frac{1}{12\pi^2}\int_0^\infty d(\sqrt{s})R(s)se^{-\sqrt{s}t}$ with $R(s)=\frac{3s}{4\pi\alpha^2}\sigma(s,e^+e^-\to {\rm had}).$

 a_{μ}^{W} has small statistical and systematic errors on lattice!

Use these windows as a lattice internal cross-check

Plot from recent theory initiative workshop (https://indico.cern.ch/event/956699/)

Use these windows as a lattice internal cross-check

Plot from recent theory initiative workshop (https://indico.cern.ch/event/956699/)

Status of consistency of lattice results

Significant difference between published high-precision LQCD results (BMW20 and RBC/UKQCD18) for window with $t_0 = 0.4$ fm and $t_1 = 1.0$ fm:

$$a_{\rm W}^{\rm BMW20} = 207.3(1.4) \times 10^{-10}$$
, (1)

$$a_{\rm W}^{\rm RBC/UKQCD18} = 202.9(1.4)(0.4) \times 10^{-10}$$
 (2)

and therefore there is a 2.2σ tension

$$a_{\rm W}^{\rm BMW20} - a_{\rm W}^{\rm RBC/UKQCD18} = 4.4(2.0) \times 10^{-10}$$
. (3)

Scaled to the total $a_{\mu}^{\rm HVP}$ this corresponds to 15×10^{-10} uncertainty on the lattice HVP compared to current 5.5×10^{-10} uncertainty of BMW20.

Urgently need new results for this and other windows. Update by RBC/UKQCD 2018 is in preparation. Hopefully available within two months. More groups to join. Important: different regulators!

Status of consistency of lattice results

Significant difference between published high-precision LQCD results (BMW20 and RBC/UKQCD18) for window with $t_0 = 0.4$ fm and $t_1 = 1.0$ fm:

$$a_{\rm W}^{\rm BMW20} = 207.3(1.4) \times 10^{-10}$$
, (1)

$$a_{\rm W}^{\rm RBC/UKQCD18} = 202.9(1.4)(0.4) \times 10^{-10}$$
 (2)

and therefore there is a 2.2σ tension

$$a_{\rm W}^{\rm BMW20} - a_{\rm W}^{\rm RBC/UKQCD18} = 4.4(2.0) \times 10^{-10}$$
. (3)

Scaled to the total $a_{\mu}^{\rm HVP}$ this corresponds to 15×10^{-10} uncertainty on the lattice HVP compared to current 5.5×10^{-10} uncertainty of BMW20.

Urgently need new results for this and other windows. Update by RBC/UKQCD 2018 is in preparation. Hopefully available within two months. More groups to join. Important: different regulators!

Continuum extrapolation - What lattice spacing is fine enough?

BMW 20 - light quark window

 3.7σ tension between BMW20 and R-ratio for Window! Discuss in second part of talk.

Red line for comparison with next slide

Continuum extrapolation - What lattice spacing is fine enough?

HPQCD 20 charm quark full a_{μ} arXiv:2005 01845

RBC 18 charm quark full a_{μ}

Finest lattice spacing in this extrapolation is green; approximately corresponds to red line in previous plots

Restricting to fixed lattice spacing range can lead to different discretization errors for different UV regulators; systematically independent calculations very desirable!

I Consistency of lattice result with R-ratio

$$R(s) = rac{3s}{4\pilpha^2}\sigma(s,e^+e^-
ightarrow ext{had})\,,\quad C(t) = rac{1}{12\pi^2}\int_0^\infty d(\sqrt{s})R(s)se^{-\sqrt{s}t}$$

Tensions in input data, however, already taken into account in WP20 merger of KNT19 and DHMZ19:

What does tension in windows mean for R-ratio?

Talk by Massimo Passera last week: if there is a shift in R-ratio, it crucially depends on which energy to understand what the impact on $\Delta \alpha$ and EW precision physics is.

Express Euclidean Windows in time-like region:

$$a_{\mu} = \int_{0}^{\infty} ds \, R(s) K(s) \tag{4}$$

and window

$$a_{\mu}^{\mathrm{W}} = \int_{0}^{\infty} ds \, R(s) K(s) \frac{P(s)}{s}. \tag{5}$$

Study of windows for different t_0 and t_1 can give some energy resolution!

Study of windows for different t_0 and t_1 can give some energy resolution!

Continuum extrapolation - What lattice spacing is fine enough?

BMW 20 - light quark window

 3.7σ tension between BMW20 and R-ratio for Window! Discuss in second part of talk.

Red line for comparison with next slide

What can we expect from LQCD in the coming years?

- More published results with high precision with different regulators for the standard window $t_0=0.4 {\rm fm},\ t_1=1.0 {\rm fm},$ $\Delta=0.15 {\rm fm}.$ This will clarify the 2.2σ tension between BMW20 and RBC/UKQCD18 for this quantity.
- More results for different windows, which will give energy resolution to locate possible remaining tension with R-ratio in time-like energy. After this: any impact on $\Delta \alpha$ and EW precision physics?
- More results of complete high-precision HVP results from major lattice collaborations. RBC/UKQCD18 aims for end of this year.

Outlook

- Expect more lattice HVP calculations at few per-mille level precision which allows for proper scrutiny at high precision; For total a_{μ} as well as windows!
- ▶ Data-driven dispersive results will improve with expected experimental results from Belle II, BESIII, CMD-3, and SND
- ► MUonE at CERN will provide complementary measurements for the HVP
- ► Theory Initiative will publish updated SM predictions as experiment and theory improves; provides platform for cross-checks and establishing new methodology

A

Thank You!