

Muon Particle Physics Future of cLFV experiments

Satoshi Mihara KEK/J-PARC/Sokendai

Outline

Introduction

- CLFV physics with PC muon beam
- CLFV physics with pulsed muon beam
- CLFV physics with tau leptons
- CLFV physics at collider experiments
- Muon g-2/EPM
- Prospects and summary

Introduction

Charged Lepton Flavor Violation

Wiki

Examples of the universe of th

- cLFV rate in the Standard Model with non-zero neutrino mass is too small to be observed in experiments; O(BR) < 10⁻⁵⁰
 - No SM Physics Background
 - Observation = clear evidence of NP
- Motivated by many kinds of new physics models BSM
- Origin of neutrino mass

- PC beam for coincidence experiments
 - Decay of pions stopping on the material surface. Muons are polarized
 - $\mu \rightarrow ex$, $\mu \rightarrow eee$

- Pulse beam for non-coincidence experiments
 - Pion decay in flight
 - μ -e conversion

Unravelling the mysteries of matter, life and the universe.

Muon cLFV experiments

EXAMPLE AND THE AND T

MEG II

Mu₃e

- $\mu \rightarrow ex$
 - MEG Br($\mu \rightarrow ex$) < 4.2x10⁻¹³
- µ→eee
 - SINDRUM BR(μ →eee) < 1.0x10⁻¹²
- μ -e conversion
 - SINDRUM II R(μ -e: Au) < 7x1 0⁻¹³

PSI Ring Cyclotron 590MeV, 1.4MW

J-PARC 8GeV, 3.2-56kW

8GeV, 8kW

CLFV Physics with DC muon beam

MEG II: $\mu^* \rightarrow e^*x$ search

• MEG achieved $4.2 \times 10^{-13} @ 90\%$ C.L. Liquid xenon photon detector (LXe) COBRA Background was dominated by superconducting magnet Accidental event overlaps • MEG II aims at twice better resolutions than MEG in all components e* • Pouble the muon beam rate • 7x10⁷ muon stops/s Pixelated timing counter (pTC) • New detector to tag the radiative Muon stopping target muon decay event Cylindrical drift chamber (CDCH) Radiative decay counter New calibration method (RDC)

Target Sensitivity : 6x10-14 in 3 years running

Background

Dominant

- Based on experience in MEG I
 - Liquid Xe PD, Positron DC, Timing Counter

MEGII Status in 2020

- All sub-detector components are ready & engineering run is in progress though there are some problems;
 - e+ drift chamber: wire breaking problem and Corona discharge \rightarrow fixed by removing weak wires and adding small amount of CO₂/H₂O
 - LXe MPPC Photon Detection Efficiency degradation due to (probably) VUV effect \rightarrow can be recovered fully by annealing
 - \bullet TC & RDC are both in good shape

VUV PDE of MPPC vs. accumulated MEG II beam time

Expected MEGH-PARC Sensitivity

- If no continuous MPPC PDE degradation below 6%,
 - Br < 5.6x1 0⁻¹⁴ (90% C.L.)
- If PDE decreases below 2% after 60 days MEG II beam, we need MPPC annealing each year and;
 - Br < 9.7x1 0⁻¹⁴ (90% C.L.)
 - Br < 6.4x10⁻¹⁴ (90% C.L.) with reduced beam intensity & 120 days running each year

MEG II sensitivity vs. DAQ year with measured LXe detector performance & PDE degradation

Mu3e: $\mu \rightarrow$ eee Search

- Another channel sensitive to cLFV with DC muon beam
 - 1.0x1 0⁻¹² (90% C.L.) by SINDRUM
 - Goal : 10⁻¹⁶ in 2 steps
- Measure all electron tracks with extreme precision
- Background source
 - μ⁺→e⁺e⁺e⁻ννν
 - Accidental overlap
- Beamline is shared with MEG II

Ultra-thin silicon pixel detector 1 per mil radiation length/layer

A. Schöning, CLFV19

Examples of the universe. Retector Preparation Sector Preparation Preparatio

Mu3e Status

- Moving from R&D phase to construction phase
 - Production in 2019
 - Detector construction in 2020
- Commissioning start in 2021

πE5 beam line

j-PARC Future prospects of High-intensity DC muon beam

- PSI HiMB project
 - Pevelopment of high-intensity beam by modification of existing target (TgM) and beam lines \rightarrow goal of 10¹⁰ surface-µ⁺/s
- New Target M Station (TgM) with 20mm thick graphite slab at
- Split capture solenoid channel close to target
 - One side: particle physics (high-intensity)
 - Other side: materials science (high-intensity, high-polarization)
- Normal conducting solenoids Front-end: radiation hard Copy of existing $\mu E4$ solenoids
- First (simple) beam optics shows that $O(10^{10}) \mu^{+}/s$ can be transported

$\begin{aligned} F_{e} = m_{\mu} - B_{\mu} - N_{recoil} \\ = 104.9 MeV \end{aligned}$

Mu-e conversion

- Atomic capture of μ^-
 - Decay in orbit (DIO)

- electron gets recoil energy
- Capture by nucleus $\mu^{-+}(A,Z) \rightarrow \nu_{\mu}^{+}(A,Z^{-1})$
 - resultant nucleus is different
- $\tau_{\mu}^{Q} < \tau_{\mu}^{free} (\tau_{\mu}^{AI} = 860 \text{ nsec})$
- μ -e conversion $\mu^{-+(A,Z) \rightarrow e^{-+(A,Z)}}$
- $E_{\mu e}$ (AI) ~ m_{μ} - B_{μ} - E_{rec} =104.97MeV

– B_{μ} : binding energy of the 1s muonic atom

µ-e Conversion Signal and Background

R_{ext}=

- Signal
 - Electron from the muon stopping target with a characteristic energy with a delayed timing
- Background
 - Decay in Orbit Electron
 - Radiative muon capture
 - Cosmic-ray
 - Anti-protons
 - ullet and others

Tiny leakage of protons in between consecutive pulses can cause a background through Beam Pion Capture process:

$$\pi^-+(A,Z) \rightarrow (A,Z-1)^* \rightarrow \gamma + (A,Z-1)$$

 $\gamma \rightarrow e^+ e^-$

Number of protons between pulses

Number of protons in a pulse

MELC Proposal

- Pion production in magnetic field
- Pion/muon collection using gradient magnetic field
- Beam transport & momentum selection with curved solenoid magnets

ISSN 1063-7788, Physics of Atomic Nuclei, 2010, Vol. 73, No. 12, pp. 2012–2016. Pleindes Publishing, Ltd., 2010. Original Russian Text © R.M. Djilkibaev, V.M. Lobashev, 2010, published in Yadernaya Fizika, 2010, Vol. 73, No. 12, pp. 2067–2971

> ELEMENTARY PARTICLES AND FIELDS Experiment

Search for Lepton-Flavor-Violating Rare Muon Processes

R. M. Djilkibaev* and V. M. Lobashev**

Institute for Nuclear Research, Russian Academy of Sciences, pr. Shestidesyatiletiya Oktyabrya 7a, Moscow, 117312 Russia Received March 26, 2010; in final form, July 12, 2010

- Momentum and charge separation
- Same scheme used in COMET Phase-II electron spectrometer

Vladimir Lobashev 1934-2011 CERN Courier Vol 51, No 8

COMET at J-PARC

COMET

J-PARC Facility (KEK/JAEA)

Neutrino beam to Kamioka

Material a

Science F

New branch of primary proton transport

Nuclear and Particl Physics Exp. Hall

expected Power for SX . > 0.1 IVIW

400 MeV

cle Synchrotron

COMET

- Target S.E.S. 2.6×10⁻¹⁷
- BGeV Pulsed proton beam at J-PARC
 - Insert empty buckets for necessary pulse-pulse width
 - bunched-slow extraction
- pion production target in a solenoid magnet
- Muon transport & electron momentum analysis using C-shape solenoids
 - smaller detector hit rate
 - need compensating vertical field
- Tracker and calorimeter to measure electrons
- COMET decided to take a staging approach to realize this. The collaboration is making an effort to start physics DAQ as early as possible under this.
 - Phase-I 8GeV-3.2kW, < 10⁻¹⁴
 - Phase-II 8GeV-56kW, < 10⁻¹⁶

Status of COMET Phase I

- Facility
 - Proton beam line & SC magnet system
- Detectors
 - Phase-I Physics Detector (CDC & TC)
 - Phase-I Beam measurement Detector (Straw tracker and LYSO Ecal)

Final assembly design

COMET Phase I Facility

- Winding of all coil components completed at the end of March 2020
- Assembling CS Cold Mass and TS1 Cold Mass in 2020
- Cryostat construction in 2021
- Installation of cold masses into the cryostat in 2022
- Contract with Mitsubishi Elec. to deliver the Pion Capture Solenoid to J-PARC in 2022

COMET Phase I Facility

As of March 2021

Beam Dump

Capture Solenoid

Pion Production Target

Muor

As of Feb. 2021

• CyDet

- Physics measurement detector
- Muon stopping target at the center surrounded by Cylindrical Drift Chamber (CDC)
- Trigger hodoscope at both ends
- StrEcal
 - Planar detector for beam measurement (and as a prototype for Phase-II physics detector)
 - Straw-tube tracker
 - LYSO electromagnetic calorimeter
- Detector solenoid magnet is commonly used in two configurations

- CPC Cosmic-ray test with full PAQ electronics (Setup 6), including Slow Control and Monitors (w/o water cooling to be implemented at COMET site)
 - Change of the resolution from the previous setup (Setup5)
 - Investigating the reason to fully understand the detector operating condition (HV, threshold, noise)
- CTH Cylindrical Trigger Hodoscope
 - Lead by Monash group
 - Two layers of scintillator and Cherenkov detectors
 - Optimization of the support structure material Al/steel
 - Photo-sensor: Fine-mesh PMTS or SiPM (MPPC)
 - Recent development of MPPC with higher radiation tolerance
 - No effect of helium atmosphere (filling the CPC inner volume) on MPPC -> Simplified structure helps to reduce unexpected background
 - Irradiation test of MPPC
 - MPPC with optical fiber read may be a solution

StrEcal

- Design work toward integration, finalized by Summer 2020
 - Mechanical analysis, protocol to install the detector, gas piping inside PS, feedthrough configurations
 - Both of Straw-tracker and Ecal are supported by PS cryostat

- CRV covers the detector solenoid with plastic-scintillation detector (high *edet*) and Glass Resistive Plate Chamber (GRPC, neutron blind)
 - Identify cosmic-ray muons arriving at the detector volume
 - PS iron return yoke and additional shield to suppress neutrons/gammas from the muon stopping target
 - Prototype construction and test at BINP (Scintillator CRV) / IN2P3 Clermont (GRPC CRV) , followed by mass-production

Trigger & DAQ

- Distinct but similar DAQ and trigger system for CyDet and StrEcal
 - CRV provides a veto signal (flag) as well as a calibration trigger
- Trigger logic development is in progress to cope with the highest DAQ rate of 20kHz
- Radiation hardness test of hardware components carried out up to 1.45 kGy
- COMET PAQ employs standard Ethernet network with commercially available components.
 - MIDAS DAQ software
 - Hardware installation started in the counting room !
 - Data writing test and transfer test as well!

2

3

Number of transport

5

6

- COMET requires MR operation at 8GeV (instead of 30GeV for HD hall experiments and T2K)
- Proton beam extracted from MR without destroying the bunch structure to generate pulsed-muon beam with a suitable pulse timing
- Proton beam extinction factor measurement using secondary beam in 2018
 - 1-2x10-10 extinction factor has already been achieved by masking K4 rear bunch

140

Injection kicker timing optimization

Mu2e at FNAL

A search for Charged Lepton Flavor Violation: µN→eN

- Expected sensitivity of 6x10-17
 90% CL, x10,000 better than SINDRUM-II
- Probes effective new physics mass scales up to 10⁴ TeV/c²
- Discovery sensitivity to broad swath of NP parameter space

Mu2e

- Mu2e makes use of existing infrastructure at Fermilab
- Mu2e uses 8 kW of protons
 - From the Booster (8 GeV) & Re-bunched in the Recycler
 - Slow-spill from Delivery Ring
 - Accumulator/Debuncher for Tevatron anti-protons
 - Revolution period 1695 ns
- Mu2e will run simultaneously with NOvA and SBN

J. Miller COMET Seminar 2021

Installation of beamline

magnets complete

TS components being

devolved to FNAL ->

completed

complete in Nov. 2020

PS model coil successfully

Cryogenics in preparation

MuZe Status

(in operation for Muon g-2 experiment)

Mu2e Status

Fermilab news Nov. 2020

Mu2e Detectors

Straw-tube tracker

Csl Calorimeter

~1400 crystals, square cross section
~3 cm diameter, 20 cm (10 X₀) length
same radii as tracker

Proto	type cryst	als for tes
amerys C0034	S-G C0065	SIC C0072
Amerys C0832	5-G C0063	BIC C0071
Amerys Coo30	5-G C0062	SIC COOTO
Ameriya C0027	S-G C0050	SIC CODES
Amerys C0026	S-G C0058	SIC C0043
Amerys Cos25	S-G-C0057	SIC CI04:
Amerys Ci023	S-G C0051	SIC C0041
Amerys Cools	S-G-C0049	SIC C6040
Amerys C0016	S-G-C0048	SIC COM9
Amerys Cools	S.C.CODIS	SIC CORIS

- Csl crystal calorimeter
 - Important for particle ID
 - ~7% energy resolution @ 105 MeV
 - <200 ps timing resolution</p>
- 2 disks oriented transverse to beam line, 70 cm apart
- Readout : 2 photo-sensors per crystal (MPPCs)

Searches for Charged-Lepton Flavor Violation in Experiments using Intense Muon Beams

Input to Eur. Particle Physics Strategy "Charged Lepton Flavour Violation using Intense Muon Beams at Future Facilities"

Once the signal is found...

• MEG II

- Muon bram is polarized (P_{μ} =-0.85)
- Gamma angular distribution
- Mu3e
 - Invariant mass distribution $m_1(e^+e^-)$ vs. $m_2(e^+e^-)$

MEG, EPJ 2016 76:223

Example the used of the signal is found...

- Comparison of signal rates of $\mu \to ex$, $\mu \to eee$, and μe conversion will clarify the physics behind cLFV reactions
- Even discovery only in μ -e conversion
 - Different target material contains different quark contents
 - May be possible to see the target dependence on the mu-e conversion rate
 - Discriminate the principal interaction of the mu-e conversion?
 - Vector type, Dipole type, or Scaler type?
- Possible taget
 - PeeMe: C (& Si)
 - COMET & Mu2e: Al (& Ti in future? & Pb in far future ??)

cLFV Physics with tau Leptons

Belle II

cLFV Physics with tau Leptons $Br(\tau \rightarrow \mu\gamma) < 4.2 \times 10^{-8}$ $Br(\tau \rightarrow e\gamma) < 5.6 \times 10^{-8}$

Moriond 2021

The Belle II Physics Book arXiv:1808.10567

cLFV Physics at Collider Experiments

- CMS & ATLAS
 - LFV Z decays:
 - B(Z \rightarrow µe) < 7.3-7.5x1 0-7, B(Z \rightarrow τµ) < 1.3x1 0-5
 - LEP has equivalent or slightly better upper limits
 - LFV top decays:
 - B(t \rightarrow ll'q) < 1.86x10⁻⁵, B(t \rightarrow eµq) < 6.6x10⁻⁶
 - LFV Higgs decays:
 - \bullet B(H $\rightarrow\mu\tau)$ < 0.25-0.28% , B(H $\rightarrow e\tau)$ < 0.47-0.61 %

Muon g-2 & EDM

CERN Courier

- In uniform magnetic field, muon spin rotates ahead of momentum due to g-2≠0
- General form of spin precession vector:

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu}\vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

BNL/FNAL approach

$$r = 29.3 (P = 3.09 \text{ GeV/c})$$

 $\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$

EXAMPLE A CONTROL OF A CONTROL

- In uniform magnetic field, muon spin rotates ahead of momentum due to $g-2\neq 0$
- General form of spin precession vector:

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \vec{\beta} \times \vec{E} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{F}}{c} \right) \right]$$

$$\int -PARC \text{ approach}_{E = 0 \text{ at any } r}$$

$$\vec{\psi}_{\mu}^{p_{\mu} = 50\% \text{ N}_{\mu} = 5.7 \times 10^{11}}$$

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} \right) \right]$$

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} \right) \right]$$

Muong-2/EPM Experiments

FNAL E989

- Run 1 data analysis result released !
- Run 2-3 data collection complete in 2019
- Run 4 data acquisition in preparation

"Muons accelerated in Japan" July 2018, CERN Courier

FNAL g-2 new result!

PHYSICAL REVIEW D 103, 072002 (2021)

deltars' Jappenies - Assaudi in Hypica

Summary

- Strong physics motivation to search for muon CLFV reactions
- Future plans of muon CLFV experiments
 - MEG II & Mu3e
 - COMET & Mu2e
- Important to achieve similar sensitivities in all channels to clarify the physics behind signal (even in case of exclusion)
- More physics results expected in coming years

Beyond MEG II

Experimental approached as a function of the beam rate

Beyond MEG II Projections

Based on the current technology development the calorimetry is still an option for beam rate not higher than 5 10⁸ mu/s

A. Papa @ HIMB Workshop 2021