

UNIVERSITY

Muon g-2/EDM Experiment at J-PARC

Takashi Yamanaka (Kyushu University) for the J-PARC E34 Collaboration

Outline of Slides

- Overview of the J-PARC muon g-2/EDM experiment
- Status of the experimental components
- Statistical and systematic uncertainties on a_{μ}
- Recent updates and schedule of the experiment

Muon g-2 and EDM

- Anomalous magnetic moment (g-2) of muon
	- Calculated in 0.37 ppm precision for muon in the SM
(Phys. Rep. 887 (2020) 1–166)
	- The best experimental precision is 0.46 ppm by the FNAL E989 Experiment.
	- The experimental average value deviates from the SM prediction by 4.2σ .
	- Can new physics explain this discrepancy?
- Electric dipole moment (EDM) of muon
	- If non-zero EDM exists, it means T violation.
	- Current experimental limit for muon is $|d_\mu| <$ 1.8 \times 10⁻¹⁹ e \cdot cm by the BNL E821 experiment.
		- [Phys. Rev. D 80, 052008 \(2009\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.80.052008)
	- The SM expectation of muon EDM is \sim 2 \times 10⁻³⁸ e \cdot cm.
	- New physics predicts much larger EDM.

• A new experiment to measure muon g-2 and EDM is under preparation at J-PARC.

BSM contributions to the muon g-2

Muon g-2 Measurement

• The spin precession vector (with respect to cyclotron motion) in the electromagnetic field can be written as follows.

$$
\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]
$$

- In the BNL and FNAL experiments, to use a beam focusing electric field, the muon momentum is chosen to satisfy $\int_{\mathcal{U}} a_{\mu} - \frac{1}{\nu^2 - 1}$ γ^2-1 $= 0$ to make $\vec{\omega} = \boldsymbol{e}$ $\frac{e}{m}a_{\mu}\vec{B}$.
	- It corresponds to $p=3.094$ GeV/c and is called as the magic momentum.
- In the J-PARC experiment, the electric field itself is eliminated, $\vec{E} = 0$
	- Use of a reaccelerated thermal muon beam is a key of this method.

Reaccelerated Thermal Muon Beam

• Full tracking detector for decay positrons

field.

J-PARC E34 Experiment

Initial goal Final goal

 $\Delta(a_\mu) \sim 0.46$ ppm $\rightarrow 0.1$ ppm EDM $\sim 10^{-21}$ e \cdot cm

Storage

Injection

$\mu^+(4 M_e V)$ Cooling $\mu^+(25 M_e V)$
Features

- **Low emittance muon beam**
- **No strong focusing**
- **Compact storage ring**
- **Full tracking detector**

Different from BNL/FNAL experiments

Acceleration μ^+ (210 MeV)

Positron

detector

Comparison of Experiment Parameters

Table 1. Comparison of BNL-E821, FNAL-E989, and our experiment.

[PTEP 2019 \(2019\), 053C02](https://academic.oup.com/ptep/article/2019/5/053C02/5506729)

J-PARC Facility

Located at Ibaraki prefecture in Japan

Muon Facility at J-PARC

S-line

- surface μ^+
- dedicated to μ SR
- S1 area is available
- S2 is under construction
- S3/S4 are planned

3 GeV proton from RCS

 2×10^{15} /s @1MW

U-line

- ultra slow μ^+
- $U1A$ for nm- μ SR
- U1B for μ microscopy
- under commissioning

To H2 H-line

- surface μ^{+} (>10⁸ μ^{+}/s), decay μ^+/μ^- , e-
- for high intensity & long beamtime experiments
- H1 for DeeMe & MuSEUM
- H2 for $g 2$ /EDM & transmission muon microscopy
- under construction

D-line

- decay μ +/ μ ⁻, surface μ +
- D1 area for μ SR
- D2 for variety of science

H-line Construction

Fig. 2. The H-line layout.

Muon beam profile monitor at H1 area and the detected beam profile.

• Construction of H-line up to H1 area has been finished.

The first beam of H-line was detected on Jan. 15, 2022.

Thermal Muon Beam

- Surface muon beam from the H-line will be used as the source.
	- Monochromatic and ~100% polarized beam
- Muon beam is stopped at an agerogel target and muonium (bound state of e^- and μ^+) is produced.
	- Laser-ablated silica aerogel is used for muonium production target.
	- Various laser-ablated structures and aerogel materials were studied ([PTEP2020, 123C01](https://academic.oup.com/ptep/article/2020/12/123C01/5909663?login=true)).
- An electron is stripped from a muonium by laser and thermal muon beam is produced. .

laser-ablated silica aerogel

Muonium Ionization

- In the original plan, an intense Lyman- α laser is used to ionize muonium.
	- To achieve the design goal of 100 μ J power laser, larger crystal is produced and tested in J-PARC MLF U-line.

Slow muon beam line constructed for Mu 1S-2S experiment

Muon Acceleration

• Thermal muon beam is accelerated to 300 MeV/c in a LINAC.

- Acceleration of muon (to be precise Mu-) with RFQ has been succeeded already.
- The rest of acceleration cavities are also designed and their performances are being evaluated with prototypes.

Prototype of IH-DTL

3D Spiral Injection

- To inject the 300 MeV/c muon beam into 66 cm-diameter storage ring, 3D spiral injection scheme was developed.
- Prototypes of kicker were fabricated, and the injection scheme is validated using low momentum electron beam.

<u> Tre</u>

3D spiral Injection orbit Prototype of kicker coils Spiral injection test equipment using electron beam

Storage Magnet

• 3 T MRI-type superconducting solenoid magnet is used to store a muon beam.

• Weak focusing magnetic field is also applied to in the storage region.

$$
B_r = -n \frac{B_{0z}}{R} z,
$$

\n
$$
B_z = B_{0z} - n \frac{B_{0z}}{R} (r - R) + n \frac{B_{0z}}{2R^2} z^2,
$$

370

Magnetic Field Measurement

- High uniformity of the magnetic field is achieved by shimming.
	- Local uniformity of 1 ppm was confirmed with the magnet used in the MuSEUM (muonium hyperfine structure measurement) experiment.
- High precision NMR probes are used for field measurement.
	- The standard probe was cross-calibrated between J-PARC g-2 and FNAL g-2 at Argonne National Laboratory (ANL) since 2017.
	- In 2017 cross-calibration, \sim 7 ppb agreement was obtained with 15 ppb uncertainties.

May 5, 2022 **Fermilab g-2 meeting** 16

Positron Tracking Detector

- Positrons from decay of stored muon beam are detected by the detector consisting of silicon strip sensors installed in the storage magnet.
	- Positron tracks are reconstructed from hits in radially arranged detector modules called "vanes" and 40 vanes will be used.
	- Each vane has silicon strip sensors in both sides with their strip directions orthogonal each other and 2D positions are reconstructed.
- The detector is required to operate in the highest muon decay rate of 6 tracks/ns.
	- To cope with this situation, 190 μ m pitch silicon strip sensor signals are readout by 5 ns sampling rate.

Detector Components

- Mass production of detector components are ongoing.
- Assembly procedures are being developed.

Flexible printed circuit boards

Specification

Fujikura Ltd.

Min. line/space: $35/35$ μ m (Sensor FPC) $15/12.5 \mu$ m (Pitch adapter)

1024 lines/layer

Specification

Hamamatsu Photonics K.K. S13804

98.77×98.77 mm size

190 μ m pitch strip

 512×2 strip

Silicon strip sensor

• Prototype version is being tested.

Track Reconstruction

- To manage detector simulation and track reconstruction, a new software framework was developed (named "g2esoft").
- Track reconstruction algorithm operating in high track density is being implemented in this software framework.

Simulated positron hits and reconstructed tracks with 25 positrons

Concept of g2esoft

Expected highest pile-up condition

Track reconstruction efficiency using the current algorithm

Extraction of a_{μ}

• The anomalous magnetic moment (a_μ) is extracted from the following formula.

$$
a_{\mu} = \frac{R}{\lambda - R}
$$

where, $R = \frac{\omega_a}{\omega_b}$ ω_p ,

- ω_a : spin precession angular frequency of muon in the storage ring
- ω_p : Larmor precession angular frequency of a free proton in the storage ring
- and $\lambda = \frac{\mu_{\mu}}{\mu_{\mu}}$ μ_p is the muon-to-proton magnetic moment ratio.
- The precision of the direct measurement by muonium spectroscopy is 120 ppb.
- The MuSEUM experiment at J-PARC is expected to improve this precision.

Statistics Estimation

- The expected initial muon rate at 1 MW proton beam is \sim 2 \times 10⁹/sec.
- Cumulative efficiency from the initial muon production target to the detected positrons is 1.3×10^{-5} .
- Then, the total number of the detected positrons at 2×10^7 sec run (-230 days) is 5.7×10^{11} .

Table 4. Breakdown of estimated efficiency.

Table 5. Summary of statistics and uncertainties.

	Estimation
Total number of muons in the storage magnet	5.2×10^{12}
Total number of reconstructed e^+ in the energy window [200, 275 MeV]	5.7×10^{11}
Effective analyzing power	0.42
Statistical uncertainty on ω_a [ppb]	450
Uncertainties on au [ppb]	450 (stat.)
	$<$ 70 (syst.)
Uncertainties on EDM $[10^{-21}$ e·cm]	1.5 (stat.)
	0.36 (syst.)

[PTEP 2019 \(2019\), 053C02](https://academic.oup.com/ptep/article/2019/5/053C02/5506729)

Statistical Uncertainty of a_{μ}

- The momentum range of the decay positions is determined to be [200,275] MeV/c from the detector acceptance and to maximize the analyzing power.
- The statistical uncertainty on a_{μ} (or $\omega_{\rm a}$, to be precise) is estimated to be 0.45 ppm from the following five-parameter-function fit to a toy wiggle plot

 $N(t) = N_0 e^{-t/\gamma \tau} [1 + A \cos(\omega_a t + \varphi)].$

• The toy MC fit result is consistent with the analytical estimation of the statistical uncertainty on ω_a of $\frac{\Delta \omega_a}{\omega_a}$ ω_{μ} = 2 $\gamma \tau A \sqrt{N \omega_a}$ where, N is the total number of detected positrons.

Toy simulation of a time spectrum of the number of decay positrons

Systematic Uncertainties of a_{μ}

• Major sources of systematic uncertainties of $\omega_{\rm a}$ and $\omega_{\rm n}$ which consist a_{μ} will be explained in this slides.

Table 6. Estimated systmatic uncertainties on a_{μ} .

[PTEP 2019 \(2019\), 053C02](https://academic.oup.com/ptep/article/2019/5/053C02/5506729)

Early-to-late Effect

- Since the rate of decay positrons changes by a factor of 150 within our data taking period (~30 μ s), detector performance changes as a function of time.
	- Performance like track reconstruction efficiency has only a small dependence on the rate of decay positrons (and this dependence can be evaluated from real data), systematic uncertainty on ω_a can be constrained to a negligibly level.
- However, if the muon decay time measurement is affected by the rate change, only a small shift leads to a large uncertainty on ω_a measurement.
	- Timing shift of 2.5 ps during 30 μ s data taking period will be 0.1 ppm uncertainty on ω_a .
	- Even with a tracking detector, pile-up of signals in single detector strip can cause a timing shift.

Systematic uncertainty on ω_a as a function of the shift of the muon decay time measurement

Pile-up Effect on Readout ASIC

- To suppress such an effect, we implemented a differentiator into the readout ASIC circuit for the positron detector.
	- Hit timing of the differentiator output has a small dependence on the input charge (<1 ns between 0.5-3 MIP input) → less affected by pile-up signals
- Systematic uncertainty on ω_a due to signal pile-up is estimated by using detector simulation with readout ASIC waveform emulation and is estimated to be less than 36 ppb.

Simulation of readout ASIC waveform with different input charge

Time shift of hit timing for different pile-up conditions

Output waveform of readout ASIC (IEEE [TNS. 67, \(2020\) 2089-2095\)](https://ieeexplore.ieee.org/abstract/document/9153019)

May 5, 2022 **Fermilab g-2 meeting** 25

Pitch Effect

• For a muon beam in a focusing field, betatron oscillation need to be considered when calculating the spin precession frequency and it is rewritten as

$$
\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - a_{\mu} \left(\frac{\gamma}{\gamma + 1} \right) \left(\vec{\beta} \cdot \vec{B} \right) \vec{\beta} \right].
$$

- Because of this, what we measure is shifted from the true $\omega_{\,\mathrm{a}}$ value (so-called a pitch effect).
- Correction factor for this effect is estimated from the precise muon tracking program.
	- Correction factor exceeds 100 ppb at $|z|>60$ mm but correction accuracy is estimated to be 13 ppb combining with measured muon beam distribution.

Correction factor for pitch-effect as a function of the vertical position

Absolute Calibration of NMR probe

- Intrinsic resolution of the standard NMR probe is estimated to be 18 ppb.
- Temperature control precision of 0.1 degree lead to another 10 ppb uncertainty.
- Uncertainties on diamagnetic field shielding effect (2.5 ppb) and material effect (9 ppb)
- The total uncertainty of the absolute calibration of the standard NMR probe is estimated to be 25 ppb.

Measure NMR frequency difference between in the cases with sample and without sample

Standard NMR probe Material effect measurement

Calibration of Trolley Probe and Field Mapping Accuracy

- Trolley probe measures the magnetic field in good field region.
- There is a field gradient 0.2 ppm/mm at a radius of 400 mm, where the trolley probe and the standard probe will be calibrated.
	- Position accuracy will be 0.1 mm \rightarrow 20 ppb for trolley probe calibration.
- Gradients of magnetic field for weak focusing are 450 ppb/mm (radial) and 6 ppb/mm (vertical)
	- 0.1 mm Position accuracy \rightarrow 45 ppb for field mapping
	- The average magnetic field will be evaluated by weighting muon beam distribution estimated by the positron detector measurement to the measured field map .

Recent Experiment Status

- Now the collaboration consists of 110 members from Canada, China, Czech, France, India, Japan, Korea, Russia, USA
	- Domestic institutes: Kyushu, Nagoya, Tohoku, Niigata, Tokyo, Ibaraki, RIKEN, JAEA, etc. KEK: IPNS, IMSS, ACC, CRY, MEC, CRC

23rd Collaboration Meeting in Dec. 2021@Online/J-PARC

Schedule

• Construction of experimental components is ongoing aiming at the start of the experiment in 2027 JFY.

Summary

- In the J-PARC E34 experiment, measurement of muon g-2 and EDM is planned with a method different from BNL/FNAL experiments.
	- Use of reaccelerated thermal muon beam enables muon beam focusing without an electric field.
	- Use of lower momentum muon beam enables the compact storage region with highly uniform magnetic field.
	- The tracking detector for decay positrons reduces pile-up of signals and is able to measure the momentum direction of positrons.
- Construction of the beam line has been started and the first beam was detected in 2022.
- Preparation of the experiment is ongoing aiming at the start of the data taking in 2027 JFY.