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Abstract

In this work we discuss the new way of the track finding procedure for g–
2/EDM experiment at J-PARC. This procedure implements the multivariate
classification method on machine learning techniques with TMVA package
and ROOT. The data from GEANT4 simulation are used for the training
and testing the program. All simulated positron tracks were divided into
three groups by the value of the transverse momentum for the better machine
learning. Preliminary results of the new track finding method are presented.
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Introduction

The purpose of the Muon g–2/EDM experiment at J-PARC is
measuring of one of the most baffling quantities in particle physics. In
this moment, the value of the muon anomalous magnetic moment factor
𝛼𝜇 is measured with unprecedented precision 0.54 𝑝𝑝𝑚 by Brookhaven
laboratory [1]. The experiment in J-PARC has set a sensitivity goal of
∆𝛼𝜇 = 0.1 𝑝𝑝𝑚. Therefore, to achieve this purpose the experiment needs
high detector efficiency and high reconstruction efficiency.

A primary proton beam of 3 𝐺𝑒𝑉 kinetic energy hits a 2 𝑐𝑚 thick
graphite target and produces surface muons (𝑃 ≈ 27 𝑀𝑒𝑉/𝑐) which are
polarized. Then muons are transported via the special channel to the silica
aerogel target. Here muons stop and form the muonium atoms (𝜇+𝑒−).
Some part of muoniums are evaporated from the target and ionized by
laser excitation producing room-temperature muons (average momentum
𝑃 = 2.3 𝐾𝑒𝑉/𝑐). Created room-temperature muons are accelerated to a
momentum of 300𝑀𝑒𝑉/𝑐 by Linac and injected into the storage magnet. The
resulting beam has a very low momentum spread (∆𝑃/𝑃 = 4 × 10−4). The
positron detector placed inside the storage magnet detects positron tracks
from decay of the stored muon beam. The detector is under development
now [2].

After the muon decays, 𝜇+ → 𝑒+ + 𝜈𝑒 + 𝜈𝜇, momentum of the positron
is up to 305 𝑀𝑒𝑉/𝑐. In order to detect the positrons in the experiment 40
identical silicon vanes with (220 × 400 × 0.03𝑚𝑚) size are used, see Fig. 1.
The vanes locate radially around a centre of the detector by 9∘ between each
other. A plane perpendicular to the vane forms the X–Y plane and a axis
parallel to an vertical is Z. Also we introduce a cylindrical system, where
𝑟 =

√
𝑋2 + 𝑌 2, 𝜑 = arctan𝑌/𝑋 and Z axis is the same. Therefore, the

detector reconstructs three-dimensional hit position.
Track finding is a combinatorial optimisation problem. For the exact

solution we should try every various heuristics to combine hits between each
other and choose the best option. Therefore, we have identified the following
problems:
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Figure 1 — Scheme diagram of the detector setup.

1. The problem is NP-complete. It means that the computing
requirements grow as non-polynomial in the size of the input data,
for example, as 𝑁 ! (factorial).

2. The problem is a broken track smoothness due to multiple scattering
and energy loss. Moreover, it produces the nonlinear dependencies
between values.

3. High rate of muons produces a huge number of hits per event (5𝑛𝑠).
The usual number of hits in event is around 103 at the maximum.
Therefore, classical solutions have to spend a lot of time processing
each event.

At the moment, we are using the simulated data with the low muon rate
(5 muons per 5 𝑛𝑠) to adjust the program parameters.
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Chapter 1. Boosted Decision Tree

A decision tree is binary tree structured classifier [3]. The tree classifies
a parameter set as a signal or background by applying a condition to one
single variable at a time, and then to the other variables at each node.
Therefore, the phase space is recursively split into many regions with different
response based on classification accuracy. Boosting is a method of combining
many trees into a strong classifier (forest). The trees are derived from
the same training ensemble by reweighting events. Finally single classifier
returns the weighted average response of this forest. Boosted decision tree
advantages:

– Nonlinear correlations
– Speed of training
– Robustness
– Multidimensionality

Data
↓

Boosting

↓
Weighted average response

Figure 1.1 — The procedure of the boosting
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Chapter 2. Method Description

In this paper we use the simulation data from the GEANT4 [4] with
5 muon decays per 5 𝑛𝑠 rate. In the beginning stage we choose the low
rate for the parameter adjustment and for the comfortable fast analyses.
The increasing of the muon rate is included in the further algorithm
improvements. We use the simulation data by two various ways: for the
training and for the testing. Every file consists of 15000 events and every
event consists of around 200 hits.

2.1 Chain Method

The basic idea of the method is to find for the selected hit next two hits
from the same track. The procedure uses the BDT to verify the parameters
between three hits. The BDT checks the parameters of the hit triple to
decide if the triple belongs to the same track. In other words, the program
chooses the triple, which the BDT response is greatest and is greater than the
threshold value. For the understanding see Fig. 2.1. Therefore, the method
is to form the consecutive segments from three hits and then combine it into
the track.

The following variables were picked for the checking by the BDT:
– 𝜌𝑋𝑌 =

√︀
(𝑋𝑖 −𝑋𝑗)2 + (𝑌𝑖 − 𝑌𝑗)2 — distance between two hits;

– ∆𝜙 = 𝜙𝑖 − 𝜙𝑗 — difference between azimuthal angles of two hits;
– |𝑍𝑖−𝑍𝑗|− |𝑍𝑗 −𝑍𝑘| — difference of changing between Z-coordinates

of two pairs;
– |𝑍𝑖 − 𝑍𝑗| + |𝑍𝑗 − 𝑍𝑘| — sum of changing between Z-coordinates of

two pairs;
– cos 𝜃𝑍𝜙 — cosine between directions in the 𝑍 − 𝜙 plane for pair of

the vectors: selected-next and two next hits;
– cos 𝜃𝑋𝑌 — cosine between directions in the 𝑋 − 𝑌 plane for pair of

the vectors: selected-next and two next hits.
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Figure 2.1 — Illustration of the chain method. The circles with names 𝑖, 𝑗, 𝑘
are signal hits from the one track in the current step, 𝑙 is signal in the next

step and the blue circles with name 𝑏 are background hits.

The first two parameters are calculated for two pairs (between selected and
next hits and between two next hits). The main idea of this parameter set is
to construct a smooth track by consecutive triples of the hits.

The parameters of the signal event for the BDT are defined as
calculated parameters for the three consecutive hits produced by one
positron. The definition of the background event is more difficult because it
can be of many types. It will be discussed in the next Section 2.2. For a more
detailed explanation of this method the reader is referred to the Chapter 4.

2.2 Training

After simulating the muon passing through the detector, the final
simulated event has a several type of the hits: positron, electron and ghost
hits. The ghost hits are electronic noises and usually located near with real
hits. Before the training of the BDT, we select the hits from the same track
(with the same muon index) and save them as a list. After that the hits
produced by electrons are excluded from this list. The ghost hits can not
be excluded from the experimental data. Therefore, this type of the hits are

8



used in the training and will be detected in the implementation. Finally, the
positron and ghost hits included in the list are sorted by time of creation.

After the dividing of the hits into tracks, we have identified three types
of the tracks by the value of the transverse momentum for the better machine
learning: track with large (200, 300)𝑀𝑒𝑉/𝑐, medium (100, 200)𝑀𝑒𝑉/𝑐 and
small (0, 100) 𝑀𝑒𝑉/𝑐 transverse momentum, see Fig. 2.2. Since each type
of the track has a different trajectory, the mean value of the parameters are
varied. Therefore, we train the algorithm for the every track type and produce
three types of the weights.

Figure 2.2 — Three types of the positron tracks.

The program selects the only track from the list, detects the value of
the track transverse momentum and divides it into the consecutive triples.
The signal event has parameters that correspond to three consecutive hits
made by the same positron. Also we train the BDT in two directions of the
track: in forward and in backward direction of the muon track. Therefore, if
the track length is 𝑛 hits, then number of the triples is equal to 2 · (𝑛− 2).
As a result, we form the signal event to train the BDT.

The background event is the event with non-consecutive hits. It means
that we can construct a many types of the background events. In this moment,
the main three types of the background events were defined for the following
sequence of hits:

1. current hit → hit from background → hit from background
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2. current hit → correct next hit → hit from background
3. current hit → other hit from track (not next) → hit from background

For one signal event, the program randomly chooses one background event
from this types and trains the BDT. The algorithm forms background events
in the current hit vicinity for the better training. It takes the next hit from
the current hit vicinity and then takes the third hit from the second hit range.

In Fig. 2.3 the final distribution of the variables for the track with the
large momentum is shown as an example. Below the results of the training
are attached, see Fig. 2.4, 2.5, 2.6. For learning around 106 events were
used. Unfortunately, the efficiency of background rejection decreases with
the momentum. But the value of this results is more than enough and we
apply it. We set the minimum value for the BDT response to 0.6.

а) First page. б) Second page.
Figure 2.3 — Distributions of the variables.

Figure 2.4 — Results of training in
the large mode.

Figure 2.5 — Results of training in
the middle mode.

Figure 2.6 — Results of training in the small mode.
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Chapter 3. Results

We should determine the minimum number of hits for the track
candidate. After the hits dividing into the simulated tracks a distribution
of the track length is presented in Fig. 3.1 for three different momentum
ranges. It became clear that if we take candidates with more than 4 hits
around 25% of the muon tracks are lost for the small and middle ranges. It
means that the efficiency of the track reconstruction is limited by 75% for
the positron with the small momentum (before 100 𝑀𝑒𝑉/𝑐). For this work
4 hits are enough to form the track candidate.

Figure 3.1 — Number of hits in one
track for different curves. Green —
large, red — medium, blue — small

curves.

Figure 3.2 — Number of hits in one
track for different curves (Zoom).

Green — large, red — medium, blue —
small curves.

3.1 Progress

An example of the track finding for a single event is presented
in Fig. 3.3. Each colour are corresponded to a separate track candidate
composed by the program. Muon rate is 5 muons in 5 𝑛𝑠. The algorithm
correctly detected tracks. However, it divided one track into three
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parts (→ 0, 2, 5). To check the quality of the track finding algorithm 1000
events with 5 are processed.

Figure 3.3 — Example of the track finding by Chain method.

The efficiency of Chain method is defined by the following way:
𝜀 = 𝑁𝑑𝑒𝑡

𝑁𝑓𝑢𝑙𝑙
, where 𝑁𝑑𝑒𝑡 — the number of the reconstructed tracks from the

different muons in the transverse momentum range with size 10 𝑀𝑒𝑉/𝑐

and 𝑁𝑓𝑢𝑙𝑙 — the full number of the simulated muons in the transverse
momentum range with size 10𝑀𝑒𝑉/𝑐, see Fig. 3.4. The statistical deviation
is 𝛿𝜀 =

√︁
𝜀·(1−𝜀)
𝑁𝑓𝑢𝑙𝑙

.

Figure 3.4 — Dependence of the efficiency of the track finding from the track
transverse momentum.
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Also we control the purity of the tracks: 𝜂 =
𝑁𝑒+

𝐿 , where 𝑁𝑒+ — the
number of the positron hits produced by the main muon (most popular in
the track candidate) and L — full length of the track. Then the purity is
averaged by each track candidate in the transverse momentum range with
size 10 𝑀𝑒𝑉/𝑐: ̃︀𝜂 =

∑︀
𝜂𝑖
𝑛 , where 𝑛 — the number of the track candidates in

the corresponding range and 𝜂𝑖 — the purity of the track in the same range.

The statistical deviation of the purity is 𝛿̃︀𝜂 =
𝜎𝜂√
𝑛
, 𝜎𝜂 =

√︂
1

𝑛−1

𝑛∑︀
(𝜂𝑖 − ̃︀𝜂)2

— standard deviation. The resulting dependence of the purity from the
transverse momentum is shown in Fig. 3.5.

Figure 3.5 — Dependence of the track purity from the track transverse
momentum.

The multiplicity of the track means that how often one muon track is
divided into M parts, where M is an average multiplicity. The multiplicity
is defined for the only muon index by the following way: 𝑚𝜇𝑖

= 𝑁𝑟𝑒𝑐, where
𝑁𝑟𝑒𝑐 — the full number of the reconstructed tracks with the same muon index.
Then the multiplicity is averaged by the each muon (𝜇𝑖) with the transverse
momentum in the corresponding range with size 10 𝑀𝑒𝑉/𝑐: 𝑀 =

∑︀
𝑚𝜇𝑖

𝑁𝜇
,

where 𝑁𝜇 — the full number of the detected muons in the corresponding
momentum range. The statistical deviation is 𝛿 = 𝜎𝑀√

𝑛
, where 𝜎𝑀 — standard

deviation of the multiplicity. The resulting dependence of the purity from the
transverse momentum is shown in Fig. 3.6.

13



Figure 3.6 — Dependence of the track multiplicity from the track transverse
momentum.

For monitoring the performance of the algorithm the dependence of the
time performance from the number of hits in event are presented in Fig. 3.7.
The value of the time performance is approximately increasing as a 𝐴 *𝑁 2 ·
ln(𝑁), where 𝑁 — number of hits in event and 𝐴 ≈ 1.3 ·10−5 — proportional
constant.

Figure 3.7 — Dependence of the algorithm time performance from the number
of hits in event.
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3.2 Failures

At the moment we have identified the following failures: high
multiplicity and paradoxically high efficiency in low momentum range.

The high multiplicity connected with the several reasons. The first
reason is that the track with the large momentum has a part outside the
detector. Therefore the detector loses the part of the track and can not
connect two consecutive hits into triple. In Fig. 3.3 the tracks number 5 and
2 are example of this effect. The second reason is the smoothness breaking
of the track. In Fig. 3.3 the tracks with numbers 2 and 0 presents the second
effect.

The paradoxically high efficiency in low momentum range is explained
by forming of fake tracks. In Fig. 3.5 the average purity is about 50% before
100 𝑀𝑒𝑉/𝑐.
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Chapter 4. Algorithm

In this chapter the track finding algorithm will be explained in details.
This chapter is divided into two parts. In the first section we explain the BDT
parameters. The second section provides a step-by-step implementation.

4.1 Training and testing

The following parameters set for the BDT are presented in Tab. 4.1, 4.2.
The other parameters are default [3].

Table 4.1
The BDT parameters

Name Volume Description
NTrees 200 Number of trees in the forest

MaxDepth 4 Max depth of the decision tree
allowed

MinNodeSize 5% Minmum percentage of training
events required in a leaf node

nCuts 5 Number of grid points in
variable range used in finding
optimal cut in node splitting

BoostType Grad Boosting type for the trees in
the forest

Shrinkage 1 Learning rate for GradBoost
algorithm

UseNvars 4 Size of the subset of variables
used with RandomisedTree

option
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Table 4.2
The BDT parameters

Name Volume Description
SeparationType SDivSqrtSPlusB Separation criterion for node

splitting
NodePurityLimit 0.75 In boosting/pruning, nodes

with purity > NodePurityLimit
are signal; background

otherwise

4.2 Implementation

Before reading the step-by-step instruction look at scheme of the
algorithm which is presented in Fig. 4.1.

1. Select the hit with the highest absolute value of the 𝑍 variable.
2. Check all possible triples with the current hit and select the triple

with the greatest response.
3. If the algorithm does not find the triple (every triple has a response

which is less than threshold) it changes direction of search from
forward to backward and repeat previous action.

4. Check all possible triples with the new two hits (found in the
previous action) and select the better third hit candidate. And so
continuing on.

5. If the algorithm does not find the good candidate (every response
is less than cut) it changes the direction of the search from forward
to backward and repeat the previous action for the second and first
hits in this track candidate. It will find the another end of the track.

6. When the algorithm finished to find the both ends of the track
candidate it remove every hit of this track from full hit list for the
current event.

7. Repeat from the first action until the hit list is empty.
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8. If the track length is more than 4 hits it will be saved and another
hits are saved together in the hit list.

9. Change the file with weights for the other momentum range and
repeat all actions.

START
List of hits

Select 1st hit with 𝑚𝑎𝑥(|𝑍|)
from list

BDT response is
more than cut?

Select 2nd and 3rd
hits with highest
response for 1st

No good sequence
Is it first time?

Save 1st hit
2nd hit → 1st
3rd hit → 2nd

Change direction of finding

FINISH
Track with 1 hit

Remove this hit from list

BDT response is
more than cut?

Select 3rd hit
with highest response

No good 3d hit
Is it first time?

Change direction
Return to the

track beginning

FINISH
Save track candidate

Remove this hits from list

Calculate variables for
(1st, any hit, any hit)

YES NO

YES

Calculate variables for
(1st, any hit, any hit)

Calculate variables for
(1st, 2nd, any hit)

NO

YES

NO

REPEAT
THE STEP

YES

NO

Figure 4.1 — Illustration of Chain Method algorithm.

The number of the action loops grows up as a 𝑁 2 · log𝑁 , where 𝑁 is
the number of hits in a single event.
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Chapter 5. Further Improvements

To solve the the failures mentioned in Sec. 3.2 we suggest two possible
solutions: Welding Module and Self-Learning.

5.1 Welding module

Once the track candidates are collected, the following parameters of
these tracks are determined:

– Center and radius of the track in XY plane
– Velocity along Z axis

After that, all the hits of the event are checked for belonging to each candidate
track. If some candidates have common hits they will be combined into one
track. If a hit from the candidate does not fit for the final track, it will not be
included. The module has to reduce the multiplicity and increases the purity
of the tracks.

5.2 Self-Learning

The algorithm can use the output files to complete the definitions of
the signal and background events. The correct and incorrect consequences
of the saved hits can be used in the new learning of the BDT. After a few
iterations the balance between events will be achieved. The illustration of
this module is presented in Fig. 5.1. As a result, the procedure has to reduce
the multiplicity and increase the purity of the tracks due to better detection
of the signal and background hits.
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Data1, Data2

Training Data Study

TrkFinding Tracks

Output1, 2

Figure 5.1 — Illustration of Self-Learning.
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Conclusion

In the current work we suggest and develop the track finding method
based in the Machine Learning techniques. According to the results of the
papers we can say that the method works stably and fast.

– The new algorithm based on the Machine Learning technique for the
track finding are developed

– The preliminary results have been obtained
– The reconstruction efficiency exceeds 95% at the track momentum

value of more than 200 𝑀𝑒𝑉/𝑐.
– The algoritm shows good computational performance with KEK CC
– Further improvements of the algorithm are required
– Tests with the high rate and 1 muon per event are necessary

In conclusion, we think that the current method has a good prospect and has
to be improved in the future.
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