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We present the first results of the Fermilab Muon g−2 Experiment for the positive muon magnetic
anomaly aµ ≡ (gµ − 2)/2. The anomaly is determined from the precision measurements of two
angular frequencies. Intensity variation of high-energy positrons from muon decays directly encodes
the difference frequency ωa between the spin-precession and cyclotron frequencies for polarized
muons in a magnetic storage ring. The storage ring magnetic field is measured using nuclear magnetic
resonance probes calibrated in terms of the equivalent proton spin precession frequency ω̃′p in a
spherical water sample at 34.7◦C. The ratio ωa/ω̃

′
p, together with known fundamental constants,

determines aµ(FNAL) = 116 592 040(54)× 10−11 (0.46 ppm). The result is 3.3 standard deviations
greater than the Standard Model prediction and is in excellent agreement with the previous BNL
E821 measurement. After combination with previous measurements of both µ+ and µ−, the new
experimental average of aµ(Exp) = 116 592 061(41)×10−11 (0.35 ppm) increases the tension between
experiment and theory to 4.2 standard deviations.

INTRODUCTION

The magnetic moments of the electron and muon

~µ` = g`

(
q

2m`

)
~s where g` = 2(1 + a`),

(` = e, µ) have played an important role in the develop-
ment of the Standard Model (SM). One of the triumphs
of the Dirac equation [1] was its prediction for the elec-
tron that ge = 2. Motivated in part by anomalies in
the hyperfine structure of hydrogen [2, 3], Schwinger [4]
proposed an additional contribution to the electron mag-
netic moment from a radiative correction, predicting the
anomaly [5] ae = α/2π ' 0.00116 in agreement with
experiment [6].

The first muon spin rotation experiment that observed
parity violation in muon decay [7] determined that, to
within 10%, gµ = 2, which was subsequently measured
with higher precision [8]. A more precise experiment [9]
confirmed Schwinger’s prediction for the muon anomaly
and thereby established for the first time the notion that
a muon behaved like a heavy electron in a magnetic field.
This evidence, combined with the discovery of the muon
neutrino [10], pointed to the generational structure of the
SM.

The SM contributions to the muon anomaly, as illus-
trated in Fig. 1, include electromagnetic, strong, and
weak interactions that arise from virtual effects involv-
ing photons, leptons, hadrons, and the W , Z, and
Higgs bosons [11]. Recently, the international theory
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FIG. 1. Feynman diagrams of representative SM contribu-
tions to the muon anomaly. From left to right: first-order
QED and weak processes, leading-order hadronic (H) vacuum
polarization and hadronic light-by-light contributions.

community published a comprehensive [12] SM predic-
tion [13] for the muon anomaly, finding aµ(SM) =
116 591 810(43)× 10−11 (0.37 ppm). It is based on state-
of-the-art evaluations of the contributions from QED to
tenth order [14, 15], hadronic vacuum polarization [16–
22], hadronic light-by-light [11, 23–36], and electroweak
processes [37–41].

The measurement of aµ has become increasingly pre-
cise through a series of innovations employed by three
experimental campaigns at CERN [42–44] and more re-
cently at Brookhaven (BNL E821) [45]. The BNL net
result, with its 0.54 ppm precision, is larger than aµ(SM)
by 3.7 standard deviations (σ). While the electron mag-
netic anomaly has been measured to fractions of a part
per billion [46], the relative contribution of virtual heavy
particles in many cases scales as (mµ/me)

2 ' 43, 000.
This is the case e.g. for the W and Z bosons of the SM
and many hypothetical new particles, and it gives the
muon anomaly a significant advantage when searching
for effects of new heavy physics. Because the BNL re-
sult hints at physics not included in the SM, Experiment
E989 [47] at Fermilab was constructed to independently
confirm or refute that finding. In this paper, we report
our first result with a precision of 0.46 ppm. Separate pa-
pers provide analysis details on the muon precession [48],
the beam dynamics corrections [49], and the magnetic
field [50] determination.

EXPERIMENTAL METHOD

The experiment follows the BNL concept [45] and uses
the same 1.45 T superconducting storage ring (SR) mag-
net [51], but it benefits from substantial improvements.
These include a 2.5 times improved magnetic field intrin-
sic uniformity, detailed beam storage simulations, and
state-of-the-art tracking, calorimetry, and field metrology
for the measurement of the beam properties, precession
frequency, and magnetic field [47].

The Fermilab Muon Campus delivers 16 highly po-
larized, 3.1 GeV/c, ∼120 ns long positive muon beam
bunches every 1.4 s into the SR. A fast pulsed-kicker mag-
net deflects the muon bunch into a 9-cm-diameter storage
aperture, resulting in ≈ 5000 stored muons per fill. The

central orbit has a radius of R0 = 7.112 m and the cy-
clotron period is 149.2 ns. Four sections of electrostatic
quadrupole (ESQ) plates provide weak focusing for ver-
tical confinement.

The muon spins precess in the magnetic field at a rate
greater than the cyclotron frequency. The anomalous
precession frequency [52] in the presence of the electric
~E and magnetic ~B fields of the SR is

~ωa ≡ ~ωs − ~ωc = − q

mµ

[
aµ ~B − aµ

(
γ

γ + 1

)
(~β · ~B)~β

−
(
aµ −

1

γ2 − 1

) ~β × ~E

c

]
.

(1)

For horizontally circulating muons in a vertical magnetic
field, ~β · ~B = 0; this condition is approximately met in
our SR. At the muon central momentum p0, set such that
γµ =

√
(1 + 1/aµ) ≈ 29.3, the third term vanishes.

In-vacuum straw tracker stations located at azimuthal
angle φ = 180◦ and 270◦ with respect to the injec-
tion point provide non-destructive, time-in-fill depen-
dent beam profiles M(x, y, φ, t) by extrapolation of decay
positron trajectories to their upstream radial tangency
points within the storage aperture [53]. These profiles
determine the betatron oscillation parameters necessary
for beam dynamics corrections and the precession data
fits discussed below.

Twenty-four calorimeters [54–56], each containing a
9× 6 array of PbF2 crystals, detect the inward-spiraling
decay positrons. When a signal in a silicon photomul-
tiplier (SiPM) viewing any crystal exceeds ∼ 50 MeV,
the data-acquisition system stores the 54 waveforms from
that calorimeter in a set time window around the event.
Decay positron hit times and energies are derived from
reconstruction of the waveforms.

The magnetic field is measured using pulsed proton
NMR, calibrated in terms of the equivalent precession
frequency ωp(Tr) of a proton shielded in a spherical sam-
ple of water at a reference temperature Tr = 34.7◦C.
The magnetic field B is determined from the precession
frequency and shielded proton magnetic moment, µp(Tr)
using ~ωp = 2µpB. The muon anomaly can then be ob-
tained from [57]

aµ =
ωa

ω̃′p(Tr)

µ′p(Tr)

µe(H)

µe(H)

µe

mµ

me

ge
2
, (2)

where our collaboration measures the two quantities to
form the ratio

R
′

µ ≡
ωa

ω̃′p(Tr)
. (3)

The Run-1 data, collected in 2018, are grouped into
four subsets (a – d) that are distinguished by unique
kicker and ESQ voltage combinations. The ratio R′µ can
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be conceptually written in terms of measured quantities
and corrections as

R
′

µ ≈
fclock ω

m
a (1 + Ce + Cp + Cml + Cpa)

fcalib 〈ωp(x, y, φ)×M(x, y, φ)〉(1 +Bk +Bq)
.

(4)
The numerator includes the master clock unblinding fac-
tor fclock, the measured precession frequency ωma , and
four beam-dynamics corrections, Ci. We deconstruct
ω̃′p(T ) into the absolute NMR calibration procedure (in-
dicated by fcalib) and the field maps, which are weighted
by the detected positrons and the muon distribution aver-
aged over several time scales (〈ωp(x, y, φ)×M(x, y, φ)〉).
The result must be corrected for two fast magnetic tran-
sients Bi that are synchronized to the injection.

Damage to two of the 32 ESQ high-voltage resistors
was discovered after completion of Run-1. This led to
slower-than-designed charging of one of the quadrupole
sections, spoiling the symmetry of the electric field early
in each fill. The impact of this is accounted for in the
analysis presented. Brief summaries of the terms in Eq. 4
follow.

ANOMALOUS PRECESSION FREQUENCY

fclock: A single 10 MHz, GPS-disciplined master clock
drives both the ωa and ω̃′p measurements. The clock has
a one-week Allan Deviation [58] of 1 ppt. Two frequen-
cies derived from this clock provide the 61.74 MHz field
reference and a blinded “(40 − ε) MHz” used for the ωa
precession measurement. A blinding factor in the range
±25 ppm was set and monitored by individuals external
to our collaboration. fclock is the unblinding conversion
factor; its uncertainty is negligible.

ωm
a : The signature of muon spin precession stems from

parity violation in µ+ decay, which correlates the muon
spin and the positron emission directions in the µ+ rest
frame. When boosted to the lab frame, this correlation
modulates the e+ energy (E) spectrum at the relative
precession frequency ωa between the muon spin and mo-
mentum directions. The rate of detected positrons with
E > Eth as a function of time t into the muon fill then
varies as

N(t) = N0ηN (t)e−t/γτµ

× [1 +AηA(t) cos (ωat+ ϕ0 + ηφ(t))] , (5)

where γτµ is the time-dilated muon lifetime (≈ 64.4µs),
N0 is the normalization, A is the average weak-decay
asymmetry, and ϕ0 is the ensemble average phase angle
at injection. The latter three parameters all depend on
Eth. The ηi terms model effects from betatron oscilla-
tions of the beam, and are not required in their absence.
This beam motion couples with detector acceptance to
modulate the rate and the average energy, and hence the

average asymmetry and phase, at specific frequencies.
The coherent betatron oscillation (CBO) in the radial
direction dominates the modulation.

The CBO, aliased vertical width (VW), and vertical
mean (〈y〉) frequencies are well-measured, and the ηi
terms are well-modeled and minimally correlated in fits
for ωa.

An accurate fit to the data also requires accounting
for the continuous loss of muons over a fill, also weakly
coupled to ωa. Coincident minimum-ionizing energies in
three sequential calorimeters provide a signal to deter-
mine the time dependence of muon losses.

Two complementary reconstruction algorithms trans-
form the digitized SiPM waveforms into positron ener-
gies and arrival times. In the “local” approach, wave-
forms are template-fit to identify all pulses in each crys-
tal, which are then clustered based on a time window. In
the “global” approach, waveforms in a 3×3 array of crys-
tals centered on a local maximum in time and position
are template-fit simultaneously. After subtraction of the
fit from the waveforms, that algorithm iterates to test for
any missed pulses from multi-particle pileup. To avoid
biasing ωa, we stabilize the calorimeter energy measure-
ment within a muon fill by correcting the energy recon-
struction algorithm on the SiPM pixel recovery timescale
(up to tens of ns) and the fill timescale (700µs) using a
laser-based monitoring system [59]. The system also pro-
vides long-term (many-days) gain corrections. The two
reconstructed positron samples are used in four indepen-
dent extractions of ωa in which each e+ contribution to
the time series is weighted by its energy-dependent asym-
metry; this is the optimal approach [60]. Seven other
determinations using additional methods agree well [48].
Each time series is modified to statistically correct for
contributions of unresolved pileup clusters that result
from multiple positrons proximate in space and time.
The analyses employ one of three data-driven techniques
to correct for pileup, which would otherwise bias ωa.

A χ2 minimization of the data model of Eq. 5 to the
reconstructed time series determines the measured (m)
quantity ωma . The model fits the data well (see inset
to Fig. 2), producing reduced χ2s consistent with unity.
Fourier transforms of the fit residuals show no unmodeled
frequency components, see Fig. 2. Without the ηi terms
and the muon loss function in the model, strong signals
emerge in the residuals at expected frequencies.

The dominant systematic uncertainties on ωa arise
from uncertainties in the pileup and gain correction fac-
tors, the modeling of the functional form of the CBO de-
coherence, and in the ωCBO(t) model. Scans varying the
fit start- and stop-times and across individual calorime-
ter stations showed no significant variation in any of the
four run groups [48].

The measured frequency ωma requires four corrections,
Ci, for interpretation as the anomalous precession fre-
quency ωa of Eq. 2. The details are found in Ref. [49].
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FIG. 2. Fourier transform of the residuals from a time-series
fit following Eq. 5 but neglecting betatron motion and muon
loss (red dashed); and from the full fit (black). The peaks
correspond to the neglected betatron frequencies and muon
loss. Inset: Asymmetry-weighted e+ time spectrum (black)
from the Run-1c run group fit with the full fit function (red)
overlaid.

Ce: The electric-field correction Ce from the last
term in Eq. 1 depends on the distribution of equilib-
rium radii xe = x − R0, which translates to the muon
beam momentum distribution via ∆p/p0 ∼= xe(1−n)/R0,
where n is the field index determined by the ESQ volt-
age [49]. A Fourier analysis [49, 61] of the decoherence
rate of the incoming bunched beam as measured by the
calorimeters provides the momentum distribution and
determines the mean equilibrium radius 〈xe〉 ≈ 6 mm
and the width σxe ≈ 9 mm. The final correction factor is
Ce = 2n(1− n)β2〈x2e〉/R2

0, where 〈x2e〉 = σ2
xe + 〈xe〉2.

Cp: A pitch correction Cp is required to account for
the vertical betatron oscillations that lead to a non-zero
average value of the ~β · ~B term in Eq. 1. The expres-
sion Cp = n〈A2

y〉/4R2
0 determines the pitch correction

factor [49, 62]. The acceptance-corrected vertical ampli-
tude Ay distribution in the above expression is measured
by the trackers.

Extensive simulations determined the uncertainties
δCe and δCp arising from the geometry and alignment
of the plates, as well as their voltage uncertainties and
nonlinearities. The non-uniform kicker time profile ap-
plied to the finite-length incoming muon bunch results in
a correlation introducing the largest uncertainty on Ce.
Cml: Any bias in the average phase of muons that

are lost compared to those that remain stored creates a
time dependence to the phase factor ϕ0 in Eq. 5. Beam-
line simulations predict a phase-momentum correlation
dϕ0/dp = (−10.0 ± 1.6) mrad/(%∆p/p0) and losses are
known to be momentum-dependent. We verified the cor-
relation by fitting precession data from short runs in
which the storage ring magnetic field, and thus the cen-
tral stored momentum p0, varied by ±0.67% compared to
its nominal setting. Next, we measured the relative rates
of muon loss (ml) versus momentum in dedicated runs

in which muon distributions were heavily biased toward
high or low momenta using upstream collimators. Cou-
pling the measured rate of muon loss in Run-1 to these
two correlation factors determines the correction factor
Cml.
Cpa: The phase term ϕ0 in Eq. 5 depends on the muon

decay coordinate (x, y, φ) and positron energy, but the
precession frequency ωa does not. If the stored muon
average transverse distribution and the detector gains
are stable throughout a fill, that average phase remains
constant. The two damaged resistors in the ESQ sys-
tem caused slow changes to the muon distribution during
the first ∼ 100µs of the measuring period. An exten-
sive study of this effect involved: a) generation of phase,
asymmetry, and acceptance maps for each calorimeter as
a function of muon decay coordinate and positron en-
ergy from simulations utilizing our GEANT-based model
of the ring (gm2ringsim); b) extraction of the time de-
pendence of the optical lattice around the ring from the
COSY simulation package and gm2ringsim; c) folding the
azimuthal beam distribution derived from tracker and
optics simulations with the phase, asymmetry, and ac-
ceptance maps to determine a net effective phase shift
versus time-in-fill, ϕ0(t); and d) application of this time-
dependent phase shift to precession data fits to deter-
mine the phase-acceptance (pa) correction Cpa. The use
of multiple approaches confirmed the conclusions; for de-
tails, see Ref. [49]. The damaged resistors were replaced
after Run-1, which significantly reduces the dominant
contribution to Cpa and the overall magnitude of muon
losses.

MAGNETIC FIELD DETERMINATION

A suite of pulsed-proton NMR probes, each optimized
for a different function in the analysis chain, measures
the magnetic field strength [50]. Every ∼3 days during
data taking, a 17-probe NMR trolley [63] measures the
field at about 9,000 locations in azimuth to provide a set
of 2D field maps. 378 pulsed-NMR probes, located 7.7 cm
above and below the storage volume, continuously mon-
itor the field at 72 azimuthal positions, called stations.
The trolley and fixed probes use petroleum jelly as an
NMR sample. The probe signals are digitized and ana-
lyzed [64] to extract a precession frequency proportional
to the average magnetic field over the NMR sample vol-
ume. A subset of probes is used to provide feedback to
the magnet power supply to stabilize the field.

Calibration procedure fcalib: The primary calibra-
tion uses a probe with a cylindrical water sample. Cor-
rections are required to relate its frequencies to the pre-
cession frequency expected from a proton in water at
the reference temperature 34.7◦C. Studies of the cali-
bration probe in an MRI solenoid precisely determine
corrections for sample shape, temperature, and magne-
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tization of probe materials to an uncertainty of 15 ppb.
Cross-calibrations to an absolute 3He magnetometer [65]
confirm the corrections to better than 38 ppb.

The calibration probe is installed on a translation stage
in the SR vacuum. We repeatedly swap the calibration
probe and a trolley probe into the same location, com-
pensating for changes of the SR field. This procedure
determines calibration offsets between individual trolley
probes and the equivalent ω′p values. The offsets are due
primarily to differences in diamagnetic shielding of pro-
tons in water versus petroleum jelly, sample shape, and
magnetic perturbations from magnetization of the ma-
terials used in the probes and trolley body. The trolley
probe calibration offsets are determined with an average
uncertainty of 30 ppb.

Field Tracking (ω′p(x, y, φ)): The 14 Run-1 trolley
field measurements bracket muon storage intervals tk to
tk+1. They provide a suite of 2D multipole moments
(dipole, normal quadrupole, skew quadrupole, ...), which
the fixed probes track. The fixed probes provide five
independent moments (four moments for some stations)
that track the field over 5◦ in azimuth for each station.
The trolley moments are interpolated for times between
the trolley runs, and the fixed probes continuously track
changes to five lower-order moments [50]. The fixed
probe and trolley measurements are synchronized when
the trolley passes, averaged over each 5◦ azimuthal seg-
ment. The trolley run at time tk+1 yields a second set of
moments mtr

i (tk+1). The fixed probe moments mfp
j (t, φ)

are used to interpolate the field during muon storage be-
tween the trolley runs. The uncertainty on the inter-
polation is estimated from both the k and k + 1 maps
and a Brownian bridge random walk model. The pro-
cedure produces interpolated storage volume field maps
ω′p(x, y, φ) in terms of the equivalent shielded proton fre-
quency throughout the Run-1 data taking periods.

Muon weighting (M(x, y, φ)): Averaging of the mag-
netic field weighted by the muon distribution in time
and space uses the detected positron rates and the muon
beam distribution measured by the trackers. The inter-
polated field maps are averaged over periods of roughly
10 s and weighted by the number of detected positrons
during the same period. The SR guide fields intro-
duce azimuthal dependencies of the muon distribution
M(x, y, φ). We determine the muon-weighted average
magnetic field by summing the field moments mi multi-
plied by the beam-weighted projections ki for every three-
hour interval over which the tracker maps and field maps
are averaged. Along y, the beam is highly symmetric and
centered, and the skew field moments (derivatives with
respect to y) are relatively small. The azimuthally aver-
aged centroid of the beam is displaced radially, leading to
relative weights for the field dipole, normal quadrupole,
and normal sextupole of ki = 1.0, 0.15, and 0.09, respec-
tively. An overlay of the azimuthally averaged field con-
tours on the muon distribution is shown in Fig. 3. The

combined total uncertainty of ω̃′p from probe calibrations,
field maps, tracker alignment and acceptance, calorime-
ter acceptance, and beam dynamics modeling is 56 ppb.
Bk and Bq: Two fast transients induced by the dy-

namics of charging the ESQ system and firing the SR
kicker magnet slightly influence the actual average field
seen by the beam compared to its NMR-measured value
as described above and in Ref. [50]. An eddy current in-
duced locally in the vacuum chamber structures by the
kicker system produces a transient magnetic field in the
storage volume. A Faraday magnetometer installed be-
tween the kicker plates measured the rotation of polarized
light in a terbium-gallium-garnet (TGG) crystal from the
transient field to determine the correction Bk.

The second transient arises from charging the ESQs,
where the Lorentz forces induce mechanical vibrations
in the plates that generate magnetic perturbations. The
amplitudes and sign of the perturbations vary over the
two sequences of eight distinct fills that occur in each
1.4 s accelerator supercycle. Customized NMR probes
measured these transient fields at several positions within
one ESQ and at the center of each of the other ESQs to
determine the average field throughout the quadrupole
volumes. Weighting the temporal behavior of the tran-
sient fields by the muon decay rate, and correcting for the
azimuthal fractions of the ring coverage, 8.5% and 43%
respectively, each transient provides final corrections Bk
and Bq to aµ as listed in Table II.
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FIG. 3. Azimuthally averaged magnetic field contours
ω′p(x, y) overlaid on the time- and azimuthally-averaged muon
distribution M(x, y).

COMPUTING aµ AND CONCLUSIONS

Table I lists the individual measurements of ωa and
ω̃′p, inclusive of all correction terms in Eq. 4, for the four
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Run ωa/2π [Hz] ω̃′p/2π [Hz] R′µ × 1000
1a 229081.06(28) 61791871.2(7.1) 3.7073009(45)
1b 229081.40(24) 61791937.8(7.9) 3.7073024(38)
1c 229081.26(19) 61791845.4(7.7) 3.7073057(31)
1d 229081.23(16) 61792003.4(6.6) 3.7072957(26)
Run-1 3.7073003(17)

TABLE I. Run-1 group measurements of ωa, ω̃′p, and their
ratios R′µ multiplied by 1000. See also supplemental mate-
rial [66].

run groups, as well as their ratios, R′µ (the latter multi-
plied by 1000). The measurements are largely uncorre-
lated because the run-group uncertainties are dominated
by the statistical uncertainty on ωa. However, most sys-
tematic uncertainties for both ωa and ω̃′p measurements,
and hence for the ratios R′µ, are fully correlated across
run groups. The net computed uncertainties (and cor-
rections) are listed in Table II. The fit of the four run-
group results has a χ2/n.d.f. = 6.8/3, corresponding to
P (χ2) = 7.8%; we consider the P (χ2) to be a plausible
statistical outcome and not indicative of incorrectly esti-
mated uncertainties. The weighted-average value is R′µ
= 0.0037073003(16)(6), where the first error is statistical
and the second is systematic [67]. From Eq. 2, we arrive
at a determination of the muon anomaly

aµ(FNAL) = 116 592 040(54)× 10−11 (0.46 ppm),

where the statistical, systematic, and fundamental con-
stant uncertainties that are listed in Table II are com-
bined in quadrature. Our result differs from the SM value
by 3.3σ and agrees with the BNL E821 result. The com-
bined experimental (Exp) average[68] is

aµ(Exp) = 116 592 061(41)× 10−11 (0.35 ppm).

The difference, aµ(Exp)− aµ(SM) = (251± 59)× 10−11,
has a significance of 4.2σ. These results are displayed in
Fig. 4.

In summary, the findings here confirm the BNL exper-
imental result and the corresponding experimental aver-
age increases the significance of the discrepancy between
the measured and SM predicted aµ to 4.2σ. This result
will further motivate the development of SM extensions,
including those having new couplings to leptons.

Following the Run-1 measurements, improvements to
the temperature in the experimental hall have led to
greater magnetic field and detector gain stability. An
upgrade to the kicker enables the incoming beam to be
stored in the center of the storage aperture, thus reducing
various beam dynamics effects. These changes, amongst
others, will lead to higher precision in future publications.

Quantity Correction Terms Uncertainty
(ppb) (ppb)

ωma (statistical) – 434
ωma (systematic) – 56
Ce 489 53
Cp 180 13
Cml -11 5
Cpa -158 75
fcalib〈ωp(x, y, φ)×M(x, y, φ)〉 – 56
Bk -27 37
Bq -17 92

µ′p(34.7◦)/µe – 10
mµ/me – 22
ge/2 – 0
Total systematic – 157
Total fundamental factors – 25
Totals 544 462

TABLE II. Values and uncertainties of the R′µ correction
terms in Eq. 4, and uncertainties due to the constants in Eq. 2
for aµ. Positive Ci increase aµ and positive Bi decrease aµ.

17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5

4.2

a × 10
9

1165900

Standard Model Experiment
Average

BNL g-2

FNAL g-2

FIG. 4. From top to bottom: Experimental values of aµ
from BNL E821, this measurement, and the combined aver-
age. The inner tick marks indicate the statistical contribution
to the total uncertainties. The Muon g − 2 Theory Initiative
recommended value [13] for the Standard Model is also shown.
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