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Abstract

After a brief introduction to the theory of the muon anomalous moment a ≡ (g − 2)/2, all the
experimental measurements of this quantity are reviewed in some detail. This includes the CERN
cyclotron experiment, the first muon storage rings at CERN, the Berkeley experiment, the invention
of the “magic energy” and the latest measurement with the third muon storage ring at Brookhaven.
The current comparison with theory is discussed.
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1. Introduction

The gyromagnetic ratio g is the ratio of the magnetic moment of a system to the
value obtained by multiplying its angular momentum by the Larmor ratio (e/2mc). For
an orbiting electron g = 1. When Goudschmit and Uhlenbeck [1] postulated the spinning
electron with angular momentum (h/4π) to explain the anomalous Zeeman effect, it was
surprising that its magnetic moment, one Bohr magneton, was twice the expected value: the
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gyromagnetic ratio for the electron was apparently 2. Later Dirac [2] found that this value
came out as a natural consequence of his relativistic equation for the electron. Kramers [3]
obtained the same result by a purely classical argument; he developed Lorentz covariant
equations for the spin motion in a moving system: comparing with the expression for
acceleration led to g = 2.

Another surprise was to come. Experimentally [4] the magnetic moment of the electron
was in fact slightly larger, so g = 2(1 + a) with a being defined as the “anomalous
moment” . In its turn the anomaly was understood [5] as arising from the quantum
fluctuations of the electromagnetic field around the particle. The calculation of this quantity
[6], in parallel with measurements of increasing accuracy, has been the main stimulus
to the development of quantum electrodynamics. Astonishingly, the electron theory and
experiment agree for this pure quantum effect to 0.02 ppm (parts per million) in a, the
limit being set by our independent knowledge of the fine structure constant α.

For the muon, the (g − 2) value has played a central role in establishing that it
behaves like a heavy electron and obeys the rules of quantum electrodynamics (QED).
The experimental value of (g − 2) has been determined by three progressively more
precise measurements at CERN and a recent experiment at Brookhaven, now achieving
a precision of 0.7 ppm in the anomaly a ≡ (g − 2)/2. In parallel, the theoretical value for
(g− 2) has improved steadily as higher order QED contributions have been evaluated, and
as knowledge of the virtual hadronic contributions to (g − 2) has been refined.

The story starts in 1956 when the magnetic anomaly a ≡ (g − 2)/2 of the electron
was already well measured by Crane et al. [7]. Berestetskii et al. [8] pointed out that the
postulated Feynman cut-off in QED at 4-momentum transfer q2 = Λ2 would reduce the
anomaly for a particle of mass m by

δa/a = (2m2/3Λ2). (1)

Therefore a corresponding measurement for the muon with its 206 times larger mass would
be a far better test of the theory at short distances (large momentum transfers). (At present
the comparison with theory for the electron is 35 times better than for the muon; but to be
competitive it needs to be 40 000 times better! The muon is by far the better probe for new
physics).

In 1956 parity was conserved and muons were unpolarized, so there was no possibility
of doing the experiment proposed by Berestetskii. But in 1957 parity was violated in the
weak interaction and it was immediately realized that muons coming from pion decay
should be longitudinally polarized. Garwin, Lederman and Weinrich [9], in a footnote to
their classic first paper confirming this prediction, used the (g−2) precession principle (see
below) to establish that its gyromagnetic ratio g must be equal to 2.00 to an accuracy of
10%. This was the first observation of muon (g−2) just 47 years ago. In 1958 the Rochester
conference took place at CERN; Panofsky [10] reviewing electromagnetic effects said
that three independent laboratories, two in the USA and one in Russia, were planning
to measure (g − 2) for the muon. In the subsequent discussion it was clear that leading
theorists expected a major departure from the predicted QED value, either due to a natural
cut-off (needed to avoid the well known infinities in the theory) or to a new interaction
which would explain the mass of the muon. At about this time a small group in CERN
started to study the problem, and in 1961 published their first result.
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The g-factor relates the magnetic dipole moment to the intrinsic angular momentum of a
charged system. Classically, the dipole moments can arise from either charges or currents.
For example, the circulating particle with electric charge e, mass m and angular momentum

has associated with it a magnetic dipole moment

L = e

2mc
. (2)

On the other hand, the electric dipole moment of some polar molecules is due to the relative
displacement of the centres of the positive and negative charge. Thus we have examples of
a magnetic dipole moment and an electric dipole moment both having their origins in elec-
tric charge, and it is interesting to note that all electromagnetic phenomena are explained in
terms of electric charges and their currents; there is no place, as yet, for magnetic poles. In
particular, the intrinsic magnetic dipole moments of all particles can be considered, in the
classical picture, to be made up of circulating electric currents and not of distributed mag-
netic charges [11]. This is just one aspect of the basic asymmetry between electricity and
magnetism, which is apparent in Maxwell’s equations. The argument of Dirac [12], that the
existence of a magnetic pole would lead naturally to the quantization of both magnetic and
electric charge, still stands as a challenge to physicists, both theoretical and experimental,
to find a proper place for the magnetic monopole in the electromagnetic theory and to estab-
lish its physical reality. The Dirac equation permits any value of g for the electron or muon,
through the possible presence of the Pauli term, but the simplest version without Pauli term
implies g = 2. To this must be added the corrections due to quantum electrodynamics
which it is the purpose of the experiment to measure. For a particle with both magnetic and
electric dipole moments, the electromagnetic interaction Hamiltonian contains a part

H = − · − · (3)

where and are the magnetic and electric field strengths, and and are the magnetic
and electric dipole moments. Following the general form of (2), we can write

= g
e

2mc

1

2

(
h

2π

)
= (g/2)µ0 (4)

= η
e

2mc

1

2

(
h

2π

)
= (η/2)µ0 (5)

where the components of are the three Pauli spin matrices and µ0 = eh/4πmc(the Bohr
magneton). Note that this quantity is proportional to an electric charge e times the Comp-
ton wavelength, so curiously the same unit is appropriate for both the magnetic moment
and the electric dipole moment (EDM). The expectation value d of the EDM must be zero
for a particle described by a state of well-defined parity. (The polar molecules referred to
above are in a mixture of degenerate states with opposite parities and are not covered by
this symmetry condition). Invariance under time reversal also requires the EDM to vanish
as a consequence of the different symmetry properties of the magnetic and electric fields.
Whilst is an axial vector, is a polar vector. Thus if the Hamiltonian equation (3) is to
remain invariant with respect to parity inversion P and time reversal T , then µ must trans-
form like an axial vector and d must transform like a polar vector. From Eqs. (4) and (5)
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(a) (b) (c)

(d) (e) (f)
A
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e+

Fig. 1. Some of the Feynman diagrams used in calculating a. The solid line represents the muon, which interacts
with the laboratory magnetic field at X. The zigzag line represents a virtual photon, which is emitted and later
reabsorbed. In (d) and (f) a virtual e+e− pair is created and then annihilates, making the closed loop (solid line).
In the “scattering of light by light” diagram (f) the electron loop interacts with the magnetic field at A and three
virtual gammas connect to the muon line.

we see that the dipole moment operators should transform like the spin operator σ . Since
this latter behaves like an axial vector, all is consistent for µ; but in the case of d, either of
the operations P or T changes the relative sign of the two sides of the equation. In order to
have a satisfactory situation, η must be zero. These arguments can be generalized to show
that for a system of definite parity, the odd electric (dipole, sextupole, etc.) and even mag-
netic (quadrupole, octupole, etc.) moments must be zero. Since the discovery that Nature
does not respect parity invariance, however, the invariance of interactions with respect to
symmetry operations must always be underpinned by experiments.

2. Survey of the theory

2.1. Quantum electrodynamics

If the muon obeys the simple Dirac equation for a particle of its mass (206 times heavier
than an electron), then g = 2 exactly; but this is modified by the quantum fluctuations in
the electromagnetic field around the muon, specified by the rules of QED, making g larger
by about 1 part in 800. The gyromagnetic ratio is thus increased to g = 2(1 + a) where
a is the anomalous magnetic moment or anomaly. The quantum effects include the rare
fluctuations, which involve virtual pion states, strongly interacting vector mesons, bosons
of the weak interaction and perhaps other particles as yet unknown. The main motivation
for measuring the (g − 2) of the muon is to see whether the known particles play their
predicted roles or whether there is something more to be discovered. For some recent
reviews of the theory see [13]. In quantum electrodynamics the lepton g-factor is expressed
as a perturbation series in powers of α/π :

aQED = A(α/π)+ B(α/π)2 + C(α/π)3 + · · · . (6)

Typical Feynman diagrams, which contribute to the calculation of the theoretical value
of a for the electron and the muon, are shown in Fig. 1, whilst a complete set of diagrams
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Table 1
Values of the coefficients in the QED expansion (6) for the muon. (Errors in the final digits are shown in brackets)

A 0.5
B 0.765 857 376 (27)
C 24.050 508 98 (44)
D 126.07 (41)
E 930 (170)

up to order (α/π)4 is given by Kinoshita et al. [14]. The calculations of the coefficients
in (6) have taken over 40 years and been extended gradually to higher and higher orders,
long computer runs being required to evaluate some of the integrals: and the work contin-
ues. Details are given in [15–17], and the results, summarized in [18], are given in Table 1.
Note that the values of B and higher coefficients include small contributions from loops
involving the τ lepton. Fig. 1(f) involves an electron loop connecting four virtual photons,
which can in principle lead to the scattering of light by light, an effect too small to be ob-
served experimentally. It contributes to the (α/π)3 term in the muon (g − 2) with a large
coefficient; see below. The most accurate value of the fine structure constant α is obtained
from the (g − 2) measurement for the electron [16]

α−1 = 137.035 999 58 (52) (0.004 ppm).

Substituting in (6) the result for the muon is

aQED = 116 584 705.7 (2.9)× 10−11 (7)

with an error of 0.025 ppm.

W W

Z H

γ γ γ

µ
ν

µ µ µ µ µ

+389 −194 <1

× 10−11

Fig. 2. One-loop electroweak radiative corrections to a.

2.2. Electroweak

In the standard model further additions to a come from the emission and reabsorption
of virtual W- and Z-bosons plus a small contribution from the Higgs, as indicated in the
diagrams of Fig. 2. These have been evaluated by many authors [19] with the result

aEW1 = 195 × 10−11 (8)
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with negligible error. The higher order electroweak diagrams are however important and a
full two loop calculation [20] gives

aEW2 = −43 (4)× 10−11 (9)

so the net result is

aEW = 152 (4)× 10−11 (10)

with an error of 0.04 ppm in a.

2.3. First order hadronic

Strongly interacting particles do not interact directly with the muon, but if they are
charged, they couple to the photon. Thus they can appear in the inner loops, such as
Fig. 1(d), for example, with a pion pair replacing the e+e− pair. Because of the high
mass of the pion, one would initially expect such amplitudes to be small, but there are
strong resonances (such as ρ,ω, φ) in the π+π−-system that enhance the effect. Only a
vector resonance can contribute, because it alone can transform directly into the virtual
photon which must have J PC = 1−− (one unit of angular momentum, negative parity, and
negative charge conjugation).

Strong contribution to 
vacuum polarization

Hadron production
(measurable) dispersion
theory relates σ (q2) 
to vacuum polarization

Real
hadronic
states

Virtual
hadrons

q2 q2

A

A

A

A

(a) (b)

Fig. 3. The photon propagator is modified by the creation of virtual hadrons (a). This is related by dispersion
theory to real hadron production in e+e− collisions (b).

This contribution is large, ∼59 ppm in a. To calculate it one must to specify the overall
probability amplitude for a photon of a given q2 to connect the two muon vertices shown
in Fig. 1(b), with the effect of virtual hadron loops fully included; that is, one requires
the propagator function of Fig. 3(a). This cannot be calculated from theory, because not
enough is known about hadrons. In the region of low q2 which applies here, quantum
chromodynamics (QCD) has a strong coupling constant and perturbative expansions
are hardly valid. However attempts are now made to calculate a by solving the QCD
equations by successive approximation on a lattice of space–time points [21]. Fortunately,
by appealing to analyticity and unitarity, the propagator in Fig. 3(a) can, in principle, be
cut in half to obtain that of Fig. 3(b), which shows an e+e− pair annihilating to give real



8 F.J.M. Farley, Y.K. Semertzidis / Progress in Particle and Nuclear Physics 52 (2004) 1–83

hadronic states. By using dispersion theory, the cross-section for Fig. 3(b) as a function of
s = (centre of mass energy)2 can be related to the propagator shown in Fig. 3(a), and so to
the anomalous moment arising from Fig. 1(d) with hadron loops:

aHAD1 = 1

4π3

∫ ∞

4m2
π

σ (s)(e+e− → hadrons)K(s) ds (11)

where σ(s)(e+e− → hadrons) is the measured cross-section for hadron production by one
photon exchange in e+e− collisions, corrected for vacuum polarization and initial state
radiation. (These corrections can be quite large (∼20%) and are not easy to determine.) s
is the square of the centre of mass energy and K (s) is an algebraic function given by

K(s) = x2

(
1 − x2

2

)
+ (1 + x)2

(
1 + 1

x2

)[
ln(1 + x)− x + xc2

2

]

+ 1 + x

1 − x
x2 ln x (12)

with x = (1 − β)/(1 + β) and β = (1 − 4m2
µ/s)

1/2. σ(s)(e+e− → hadrons) can be
obtained by measuring the ratio R(s) of hadron to muon production in the same colliding
beam,

R(s) = σ(e+e− → hadrons)

σ (e+e− → µ+µ−)
, (13)

the denominator being known from QED. Alternatively the luminosity (number of
collisions per second) may be calibrated by observing Bhabha scattering in the e+e−
interactions. The calibration must be done independently for each centre of mass energy.

R(s) has been measured over many years by varying the energy of the colliding e+e−
beams, typical results being shown in Fig. 4. Accurate data from the two pion threshold
up to 1.4 GeV centre of mass energy, have been obtained at Novosibirsk [22]: because of
the ρ resonance at 770 MeV and the factor K(s) which favors low energies, 72% of aHAD1

comes from this region. Beijing [23] has covered the range 2.0–5 GeV.
More recently data has been recorded at Frascati [24] with e+e− colliding at a fixed

energy, 1.02 GeV in the centre of mass, to coincide with the Φ resonance. If one of the
incoming leptons radiates a hard gamma, the energy available for the pion pair is reduced.
The group measure the cross-section as a function of the energy of the pion pair (the
radiated gamma is not detected), and using QED they calculate R(s). In this case the
normalization is automatically the same for all values of s, so the method gives a good
independent check on the shape of the curve of R versus s. It is particularly good for low
values of s which are difficult to reach with the normal colliding beams (low luminosity).
The value of R(s) at threshold is known independently from the pion form factor [25].

One of the main difficulties in analyzing the data is to make the correct allowance for
vacuum polarization and radiation by the incoming leptons; the computation depends on
the resolution of the detectors in energy and angle, and so tends to be specific to a particular
apparatus. (Final state radiation is comparatively small because of the higher pion mass.) It
is difficult to get aHAD1 to better than 1%. Recent very careful evaluations are in reasonable
agreement as shown in Table 2 below.
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Fig. 4. The cross-section for hadron production in e+e− collisions as a function of centre of mass energy.

However, the Novosibirsk data have now been corrected [126] for an error in the
luminosity measurement, leading to revised results for aHADI, also given in Table 2.

If one believes the standard model the same information is available from the branching
ratios in τ± decay which is mediated by virtual W± intermediate bosons. For example, the
W− couples to (µ−, ν̄µ), the normal weak interaction, but also to a multiplicity of hadronic
states with total electric charge −1. The conserved vector current hypothesis [26] relates
this “charged current” interaction to the “neutral current” coupling of a virtual gamma
to the same hadronic states. From the τ branching ratios one can derive the amplitude
for the charged “spectral function” (up to an energy of 1.8 GeV) and thus compute the
corresponding quantity for the coupling of the virtual gamma to hadrons at the same q2:
just what is needed in formula (11) to calculate aHAD1. The miracle is that this works. The
disappointment is that it does not work perfectly: the two results differ by about 1%.

Of course CVC is not perfect and the hadronic states produced are not identical: τ−
decays to π−π0 (isovector), while e+e− produces π+π− (a mixture of isoscalar and
isovector), and the π− and π0 have different masses. The spectral function is dominated
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Table 2
Values of the lowest order hadronic contribution to aHAD1 × 1011

Using 2001 data
Jegerlehner e+e− 6836 (86) [28]
Davier et al. e+e− 6847 (70) [27]
Hagiwara et al. e+e− 6831 (62) [29]
Davier et al. τ decay 7019 (62) [27]

Using 2003 data
Davier et al. e+e− 6963 (72) [127]
Ghozzi and Jegerlehner e+e− 6948 (86) [128]

by the ρ resonance; but ρ0 and ρ− have different masses. The ω should not couple to the
two pion final state; but it shows up in the cross-section as ρ/ω interference, which gives
the sharp drop at the right of the ρ peak in Fig. 4. It does not appear in τ decay because
the ω is neutral. Davier and his colleagues [27] make sophisticated corrections for all these
CVC breaking effects. The long-standing discrepancy between the e+e− data and the τ
data has recently been ascribed [128] to the different resonance parameters for the ρ± and
the ρ0. The ρ± (seen in τ -decay) is about 4.6 MeV heavier and is wider than the ρ0 (seen in
e+e− collisions) and this makes the integral (11) larger. Correcting for this effect appears
to resolve the discrepancy. It is now generally agreed that the e+e− results should be used
to confront the experimental value of a, while the τ data are useful for testing CVC.

This is not the end of the story: there are higher order hadronic effects which are small
but significant, to be discussed next.

2.4. Higher order hadronic

The higher order hadronic diagrams shown in Fig. 5 have a loop of virtual hadrons, as
in the first order hadronic, plus additional gammas, or extra loops of electrons or hadrons.
These have been evaluated by several authors [30, 31] with the consensus result

aHAD2 = −100 (6)× 10−11. (14)

More controversial have been the “hadronic light-by-light scattering” diagrams,
Fig. 5(d), so called because the four virtual photons are connected by a hadron loop, which
could in principle lead to the scattering of light by light in vacuum, an effect which is too
small to be observed. The analogous diagram with four photons connected by an electron
loop is more important and is the main contributor to the coefficient C in Eq. (6) mentioned
above; see Fig. 1(f).

For many years there was a consensus that this term aHAD,L×L was negative, −85 (25)×
10−11, that is about −0.8 ppm in a. Intuitively this was surprising because one would
expect the main effect to be due a quark loop and the corresponding contribution with
an electron loop is strongly positive. But the experts assured us that hadrons are more
complicated.

In 2001, with an apparent discrepancy between experiment and theory emerging rather
clearly (see Section 8.11), the Marseille group [32] decided to re-evaluate this term and
they discovered a mistake in sign, common to all previous authors! The new calculation
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γ γ γ

γ

γ

µ

µ µ µ

he+

e−

h h h

h

−101 (6) × 10−11

(a) (b) (c)

(d)

Fig. 5. Second order hadronic diagrams.

assumes that the effect is dominated by a virtual π0 and uses approximations based on
chiral perturbation theory. To allow for the difficulties a fairly large error is assigned.
The change of sign was eventually confirmed by the experts [33] and the currently agreed
value is

aHAD,L×L = +86 (35)× 10−11. (15)

The overall effect of this change was to increase the theoretical prediction for a by
1.5 ppm bringing the theory closer to the experimental value (see Section 8.11).

2.5. Standard model prediction

The current values of the various theoretical contributions to the muon anomalous
moment are summarized in Table 3 together with the total prediction. One sees that the
error is dominated by the uncertainty in the first order hadronic effect, for which we have
adopted the mean of the latest e+e− values from Table 2.

2.6. New physics

It was realized from the beginning [34, 35] that any new field coupled to the muon
would, like the electromagnetic field, add its own cloud of evanescent particles and give
an additional contribution to the muon (g − 2). A search for such fields, which could
perhaps explain the µ–e mass difference [10], was one of the main motives for measuring
this quantity. Berestetskii’s formula (1) is broadly valid for any new effect involving an
energy of order Λ, with the proportionality constant adjusted according to the strength of
the coupling. For example a field of mass Λ = 100 GeV and coupling constant α would
change a by 0.7 ppm.
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Table 3
Summary of theoretical predictions for a × 1011

QED 116 584 706 (3)
Electroweak first order 195
Electroweak second order −43 (4)
Hadronic first order 6956 (70)
Hadronic second order −100 (6)
Hadronic L × L 86 (35)
Total theory 116 591 800 (88)

There are many speculative extensions of the standard model and new papers are
published almost weekly discussing the current discrepancy between experiment and
theory (see Section 8.11). We cannot summarize them here but refer instead to some of the
more useful reviews [13, 18]. In particular Supersymmetry (SUSY) with its multiplicity of
undiscovered particles can account for a higher muon (g − 2) value. In the minimal SUSY
model, the effect on a is dominated by the mass M of the lightest supersymmetric particle
(in units of 100 GeV/c2) and tanβ, the ratio of the Higgs masses. Approximately

aSUSY = 1.2 ppm × (tanβ/M2). (16)

To get a positive contribution the supersymmetry parameter µ must be positive and there
must be more than one Higgs particle. There are solutions which explain the current muon
(g − 2) value and are compatible with limits on SUSY from LEP and dark matter in the
universe [36].

Ending this review of the theory, note that minor adjustments to the calculations are still
being made, as theorists review their work and better experimental data on the R-value
in (13) become available. This applies in particular to the hadronic first order contribution
which depends entirely on the measurements with colliding beams which are steadily being
improved.

3. Spin motion

3.1. Precession at rest

If a positive muon is brought to rest in a magnetic field; the spin rotates at angular
frequency

ωs = (g/2)(eB/mc) (17)

and the angular distribution of decay electrons must rotate at the same frequency. If decays
are counted in a particular direction, the counting rate N(t) will be modulated by the
precession frequency ωs ,

N(t) = N0 exp(−t/τ)[1 + A cos(ωs t + φ)]. (18)

This precession frequency has been measured many times in fields calibrated in terms of
the proton spin frequency ωp . The ratio λ = ωs/ωp = µµ/µp , where µµ and µp are
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O A

B

θ

Fig. 6. Thomas precession. Initial motion along OA becomes motion along OB because of transverse acceleration.
The arrow represents a gyroscope pointing in a fixed direction. At low speeds we expect φ = θ , but this is
modified at velocities near c.

the magnetic moments of the muon and proton, has been determined in this way, as also
from measurements of the hyperfine splitting in muonium. The current best result from
muonium is [37],

λ = 3.183 345 39 (10). (19)

From Eq. (17) the g-factor of the muon could be deduced to a similar accuracy if the mass
m of the muon was known. However the only independent measurement of m, from X-ray
transitions in µ-phosphorus is accurate only to one part in 104 [38] and this confirms the
theoretical value of a to about 15%. By studying the spin motion of muons in flight it proves
possible to measure a frequency that is proportional not to g, but to (g−2). Combined with
the precession at rest this gives a precise value of g as well as the muon mass.

3.2. Precession in flight

3.2.1. Magnetic field only
Professor Crane at Ann Arbor [7] was the first to note that at low velocities the orbit

frequency ωc = eB/mc of an electron (or muon) in a magnetic field B is almost the same
as its spin frequency ωs Eq. (17). At low velocities the spin frequency is not affected by
the motion and the difference frequency is a measure of the magnetic anomaly,

ωa ≡ ωs − ωc = (g/2)(eB/mc)− (eB/mc) = a(eB/mc) (20)

so the small quantity a ≡ (g − 2)/2 can be measured by observing the spin angle relative
to the momentum vector. Thus the quantum correction to g can be determined directly and
this is much more accurate than comparing the value of g with the Dirac value 2.

To calculate the spin motion for a particle rotating at relativistic speeds, it is necessary
to consider the influence of the transverse acceleration, which gives rise to an effect known
as the Thomas precession [39]. To explain this effect, we follow an argument developed by
one of us in the Cargèse Lectures in Physics, 1968 [40].

In Fig. 6, consider a gyroscope moving parallel to the x-axis OA and pointing initially
along OA. It is assumed that the gyroscope is non-magnetic and is not subject to any
couple: it just has the property of pointing always in the same direction. Suppose, further,
that the gyroscope is accelerated transversely so that it now moves along OB at an angle
θ to the original direction. The angle between the gyroscope axis and its new direction
of motion is called φ. As the gyroscope keeps its direction, the result expected is φ = θ .
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α

Fig. 7. Spherical trigonometry. When an arrow near the pole is displaced parallel to itself its angle relative to the
lines of longitude changes. But at the equator this angle remains fixed.

But unfortunately this is not true at relativistic speeds; the direction is modified by the
Thomas precession. The result can be derived in a simple way by considering rotations in
Minkowski space. This involves some spherical trigonometry, so we first consider a simple
geometrical problem in which no velocities are involved.

Fig. 7 shows a section of the globe with two lines of longitude separated by the small
angle θ . There is an arrow near the pole, pointing due south along the meridian. Let the
arrow be displaced parallel to itself until it lies on the line of longitude θ . The angle between
the arrow and the new line of longitude is called φ. Near the pole, φ = θ . However, if the
experiment is repeated at the equator the arrow will always point south: φ = 0. At an
intermediate latitude, designated by the angle α shown in the figure, the result will be
between these two extremes. As only sine and cosine functions are involved in spherical
trigonometry, it is not surprising to find that the general law is

φ = θ cosα. (21)

Returning now to Minkowski space (Fig. 8) for a gyroscope moving at velocity v in the
x-direction, the time-axis t is rotated to t ′ through the angle given by cosα = γ =
(1 − β2)−1/2, with sin α = iβγ where β = v/c. An acceleration in the y-direction
then implies a rotation of coordinates about the axis Ox ′, bringing the time-axis to t ′′.
Suppose that the gyroscope is now moving at an angle θ to the x-axis; the angle between
the gyroscope and the new direction of motion is, according to Eq. (21),

φ = θ cosα = γ θ. (22)
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Fig. 8. Derivation of Thomas precession using Minkowski space.

The angle φ is greater than the classical value, because Minkowski space is not really
spherical, but involves imaginary angles. In effect, when the direction of the motion is
changed by θ , the gyroscope apparently rotates through an angle (γ − 1)θ in the opposite
direction. This is called the Thomas precession and is usually thought of as a rotation of
the rest-frame axes associated with the transverse acceleration [39]. A derivation of the
Thomas precession using spherical trigonometry in 4-space, broadly similar to the above,
was published by Sommerfeld [41]. What happens if the gyroscope is a muon and the
deflection is due to a magnetic field B? Suppose that in time t the momentum vector is
deflected through an angle θp . Allowing for the relativistic mass γm,

θc = (e/γmc)Bt . (23)

The rest-frame axes then turn in the opposite direction through the Thomas angle:

θ∗
t = (γ − 1)θc. (24)

(Starred quantities correspond to the rest frame, unstarred quantities to the laboratory.) In
the rest frame the magnetic field B∗ = γ B acts on the spin for the time t∗ = t/γ , so the
spin turns relative to the axes through

θ∗
s = g(e/2mc)B∗t∗ = g(e/2mc)Bt = (1 + a)(e/mc)Bt . (25)

The overall angle between the spin and the momentum vector is therefore

θ = θ∗
s − θ∗

t − θ∗
c = a(e/mc)Bt . (26)
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The frequency at which the spin turns relative to the momentum vector is

ωa = a(eB/mc) (27)

which is the same as the result (20) derived for very low energies.
Combining with Eq. (17) gives

a = ωa/(ωs − ωa) = R/(λ− R) (28)

where R = ωa/ωp and λ = ωs/ωp . When the magnetic field in which the muons are
stored is calibrated in terms of the proton resonance frequencyωp , the experiment becomes
a measurement of the ratio R = ωa/ωp . The muon spin frequency ωs in the same field is
then obtained from the known ratio λ (see Eq. (19) above), and this leads to Eq. (28).

Eq. (20) is thus seen to be valid for all particle velocities, and a measurement of ωa , the
rate at which the spin turns relative to the momentum vector, determines a = (g − 2)/2
directly; the only auxiliary constant required is λ.

More formal derivations of Eq. (27) for relativistic particles were given by Mendlowitz
and Case and by Carrassi using the Dirac equation [42], and by Bargmann, Michel and
Telegdi using a covariant classical formulation of the spin motion [43].

It must be stressed again that the result (27) for the anomalous precession frequencyωa

does not contain the relativistic factor γ , essentially because in going to the rest frame, time
is shortened by 1/γ , but the magnetic field is increased by γ so the product Bt remains the
same. This is why at high energies the decay lifetime for relativistic muons is lengthened,
but the precession frequency remains the same as before: so more precession cycles can be
measured, leading to increased precision.

3.2.2. Magnetic and electric field
If an electric field is used to focus the particles vertically as in the third CERN

experiment, it may upset the spin motion. In general it does, and in fact stray radial electric
fields caused considerable difficulty in the electron (g−2) experiments performed by Crane
et al. at the University of Michigan [44]. It turns out that these difficulties can be avoided
by using muons of a carefully chosen “magic” energy. The radial component Er of the
electric field bends the particle orbit; it also induces a vertical magnetic field B∗

z = βγ Er

in the rest frame and this changes the spin precession frequency. To study this in detail,
we must repeat the analysis of the relativistic spin precession in the presence of the radial
electric field. The deflection of the momentum vector in time t becomes

θc = (e/γmc)(B + Er/β)t . (29)

The Thomas angle is again θ∗
t = (γ − 1)θc and B∗ = γ B + βγ Er , so

θ∗
s = (1 + a)(e/mc)(B + βEr )t (30)

giving

θ = θ∗
s − θ∗

t − θ∗
c = a(e/mc)Bt[1 + (1 − 1/aβ2γ 2)(βEr/B)]. (31)

So the new (g − 2) precession frequency is

ω′
a = ωa[1 + (1 − 1/aβ2γ 2)(βEr/B)]. (32)
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Fig. 9. Axes xyz rotating about z so that the momentum vector p lies always in the x–z plane. Owing to pitch
oscillations the pitch angle ψ between p and the x-axis is varying. The spin angle is determined in the plane P
(inclined at angle hψ to the x-axis) because a spin in this plane moves into the x–y plane when ψ passes through
zero.

With particle mass m and momentum p, if (p/mc)2 = β2γ 2 = 1/a the second term in
Eq. (32) is zero and radial electric fields do not affect the (g − 2) precession frequency
[45]. This corresponds to a momentum of 3.094 GeV/c which was used in the third
(g − 2) experiment at CERN and the more recent measurement at Brookhaven (see
Sections 7 and 8).

3.3. Pitch correction

The formulae for the (g − 2) precession frequency ωa derived above assume that the
particle orbit lies in a plane exactly perpendicular to B . If the velocity has a small angle ψ
relative to this plane, the particle follows a spiral path with pitch angle ψ , and the (g − 2)
frequency is altered. In a real storage system, the pitch angle is corrected by the vertical
focusing forces, which prevent the particles being lost; the pitch angle changes periodically
between positive and negative values, and the correction to the (g − 2) frequency becomes
more complex. All the (g −2) experiments for electrons and muons are in principle subject
to a pitch correction. Early evaluations of the pitch correction by Wilkinson and Crane
[44], Henry and Silver [46], and Fierz and Telegdi [47] were superseded by the analysis of
Granger and Ford [48] which, for the first time, took proper account of the changes in pitch
angle. Farley [49] obtained the same results with a different approach, and extended the
analysis to include both electric and magnetic focusing. This analysis was further pursued
by Field and Fiorentini [50].

Suppose the main magnetic field Bz is along the z-axis so on average the particles rotate
in the x–y plane. Consider a particle at a small pitch angle ψ with respect to the x–y
plane. Suppose further that the pitch angle varies harmonically at the pitching frequency
ωv owing to axial focusing forces (radial component of the magnetic field or axial electric
field)

ψ = ψ0 sin(ωv t). (33)

Choose a right-handed Cartesian coordinate frame (see Fig. 9) rotating about the z-axis
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with the momentum vectors at the angular frequency

ωc = eBz/γmc. (34)

The momentum vector lies always in the x–z plane but makes an angle ψ to the x-axis.
The spin motion is calculated relative to this frame, and from this the frequency of spin
precession relative to the momentum vector, the (g − 2) frequency, follows immediately.
Note that Bz need not be constant; if it varies with particle position the analysis is still valid
but the time average of Bz must be inserted in the final equations.

Telegdi and Fierz [47] give a general recipe for computing the spin motion. First find
the frame rotating with the momentum vector. Relative to this frame the spin rotates in
laboratory time around the rest frame magnetic field

∗
at angular frequency

ω = a(e/γmc)B∗. (35)

We distinguish two components of the spin motion: (i) due to the main field Bz , and (ii) due
to the axial focusing forces. For (i), the angular velocity of the spin relative to the rotating
frame P is given by (35). Resolving Bz parallel and perpendicular to the momentum,
transforming to the rest frame, and recombining, one finds the x- and z-components of ω.

ωx = −ω0
γ − 1

γ
ψ (36)

ωz = ω0

(
1 − γ − 1

γ
ψ2
)

(37)

where ω0 = a(eBz/mc) is the (g − 2) angular frequency when ψ = 0 and ψ is assumed
to be small.

When the axial focusing forces deflect the momentum vector vertically through the
angle ψ in the x–z plane, the spin follows the momentum vector with an additional angle
due to (g − 2) precession in the vertical plane, so it rotates in the x–z plane through the
angle hψ , where

h = 1 + γ a for magnetic focusing (38)

and

h = 1 + β2γ a − 1/γ for electric focusing. (39)

Therefore the harmonic pitch oscillation (33) of amplitude ψ0 produces a corresponding
vertical oscillation of the spin with amplitude hψ0 giving it an instantaneous angular
velocity:

ωy = hωvψ0 cos(ωv t). (40)

The detailed equations for the spin motion in this situation were derived by Farley [49] and
the argument is reproduced in [51].

The main results may be derived directly by means of a simple physical argument using
Eqs. (36)–(40). We are interested in the average rotation of the spin about the z-axis, i.e.
the projection of the spin on the x–y plane. Therefore consider the spin rotation in this
plane at instants when the pitch angle is zero, neglecting for the average motion the small
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non-cumulative nutations that occur during the pitch oscillations. The essential step is to
recognize that when the pitch angle is ψ , we must determine the progress of the spin in
the plane P which makes an angle hψ with the x-axis, as indicated in Fig. 9. Any spin
direction lying in this plane will be turned into the x–y plane when the pitch angle again
becomes zero.

The plane P also rolls sideways, to and fro, under the action of the longitudinal
component Bx of the field; see (36). Integrating (36) with ψ given by (33), the maximum
roll angle is ψ0(ω0/ωv)(γ − 1)/γ . As ω0 < ωv/10 in all the experiments reported here,
the roll angle can be neglected in this simplified treatment.

To compute the spin motion in the plane P , resolve the angular velocities (or magnetic
fields) parallel (ω‖) and perpendicular (ω⊥) to the plane P . From Eqs. (36) and (37),

ω⊥ = ωz cos(hψ)− ωx sin(hψ) = ω0{1 − 1
2ψ

2[1 + (h − 1)(h − 1 + 2/γ )]}.
(41)

When the pitch frequencyωv is much greater than the (g−2) frequency,ω‖ changes rapidly
in sign and contributes nothing to the net spin precession. So, in this case, the observed spin
motion will be determined by ω⊥ alone, as given by (41). The average value ofψ2 is ψ2

0/2
so the observed (g − 2) frequency is ω0(1 − C) with the correction factor given by

C = 1
4ψ

2
0 {1 + (h − 1)(h − 1 + 2/γ )}. (42)

More generally the spin moves under the action of the three Eqs. (36), (37) and (40) which
can be solved [49, 50] to give

C = 1

4
ψ2

0

[
1 − ω2

0

γ 2(ω2
0 − ω2

v)
− ω2

v(h − 1)(h − 1 + 2/γ )

ω2
0 − ω2

v

]
. (43)

When the pitch and (g − 2) frequencies are nearly equal the spin moves out of the x–y
median plane and the corrections are large, but not infinite as suggested by (43); one must
refer to [50] for an exact solution. In the experiments reviewed here the pitch and (g − 2)
frequencies are far apart, the spin stays close to the median plane and the corrections are
small.

When the vertical focusing is provided by magnetic gradients, (h − 1) = γ a, while for
focusing by electric quadrupoles at the magic energy, h = 1. But the error in the correction
is dominated by the uncertainty in knowing ψ0 precisely, so in practice when the pitch
frequency is much higher than the (g − 2) frequency the correction to be applied in both
cases comes to

C = ψ2
0/4 = n〈z2〉/2r2 (44)

where z is the instantaneous vertical excursion of the muon from the median plane in a
weak focusing ring of radius r , and n is the field index. The angle brackets 〈 and 〉 indicate
the average over the orbit; more generally the average must also cover all muons in the
relevant population.
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4. CERN cyclotron 1958–1962

By 1958, QED was an established theory of some 10 years’ standing, corroborated by
accurate measurements of the Lamb shift. The g-factor of the electron was known through
electron spin resonance [52] to one part per million (ppm); in 1950, Karplus and Kroll [53]
had shown how to calculate the higher order corrections to g, and a numerical error in their
results had been corrected by Petermann [54], Sommerfield [55], and Suura and Wichmann
[56], bringing theory into line with experiment at the level of (α/π)2. Professor Crane
at the University of Michigan [7] had discovered the principle of (g − 2) spin motion
explained above and was using it to measure a for the free electron. Eq. (20) had been
proved to hold for relativistic velocities.

Turning to the muon, the bremsstrahlung cross-section at high energies had been
measured with cosmic rays and was shown to agree [57] with a spin assignment of 1/2
rather than 3/2. A similar conclusion followed from data on neutron production by cosmic-
ray muons [58]. Experiments with cosmic-ray and accelerator-generated muons were in
progress to compare the electromagnetic scattering of muons and electrons by nuclei.
Thus evidence was accumulating that the muon behaves as a heavy electron of spin 1/2.
Berestetskii et al. [8] had emphasized that QED theory implied an anomalous magnetic
moment for the muon, of the same order as for the electron, but as the typical invariant
momentum transfer involved was q2 ∼ m2, an experiment for the muon would test the
theory at much shorter distances. Feynman [59] felt that the divergences in QED would be
limited by a real energy–momentum cut-off Λ, and anticipated that Λ could be of the order
of the nucleon mass. This would imply a 0.5% effect on the muon (g − 2). Alternatively if
the muon had a structure that gave it a form factor for photon interactions, the value of a
would be less than predicted.

On the other hand, it was thought [34] that the muon should have an extra interaction that
would distinguish it from the electron and explain its higher mass. This could be a coupling
to a new massive field, or some specially mediated coupling to the nucleon. Whatever the
source, the new field should have its own quantum fluctuations, and therefore give rise to
an extra contribution to the anomalous moment a. The (g − 2) experiment was recognized
as a very sensitive test of the existence of such fields, and potentially a crucial signpost
to the µ–e problem.

At this stage there was no prospect of such an experiment, but in 1957 parity violation
was discovered [60], muon beams were found to be highly polarized and, better still, it
was found that the angular distribution of the decay electrons could indicate the muon spin
direction as a function of time [9]. The angular distribution of electrons from the decay
of polarized muons agreed [61] with spin 1/2 and was inconsistent [62] with spin 3/2. A
wide variety of muon precession and spin-resonance experiments would be carried out in
the next few years [63].

The (g − 2) principle was invoked in the first paper on muon precession by Garwin
et al. [9], who concluded out that g must be 2.00 to within 10%, because although the
muon trajectory had been deflected through 100◦ by the cyclotron magnetic field, the muon
polarization was still longitudinal. The possibility of a (g − 2) experiment for muons was
envisaged, and groups at Berkeley, Chicago, Columbia and Dubna started to study the prob-
lem [10]. Compared with the measurement for the electron, the muon (g − 2) experiment
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Fig. 10. The first experimental magnet in which muons were stored at CERN for up to 30 turns. Left to right:
Georges Charpak, Francis Farley, Bruno Nicolai, Hans Sens, Antonio Zichichi, Carl York and Richard Garwin.

was much more difficult because of the low intensity, diffuse nature and high momentum
of available muon sources. The lower value of (e/mc)made all precession frequencies 200
times smaller, but the time available for an experiment was limited by the decay lifetime,
2.2 µs. Therefore large volumes of high magnetic fields would be needed to give a reason-
able number of precession cycles. One solution was to scale up the method used at Ann
Arbor [64] for the electrons, using a large solenoid and injecting the muons spirally at one
end. This was pursued at Berkeley [65] and finally led to a 6% measurement (Section 5).

At CERN, the work centred on the belief that it should be possible to store muons
in a conventional bending magnet with a more or less uniform vertical field between
roughly rectangular pole pieces. In a typical field of 1.5 T, the muon orbit would make
440 turns during the lifetime of 2.2 µs. As a ∼ α/2π ∼ 1/800, the angle between the
spin and the momentum vector would develop 800 times more slowly, giving a change
in beam polarization of about 180◦ to be studied. The polarized muon beam from the
CERN synchrocyclotron could fairly easily be trapped inside a magnet. The particles were
aimed at an absorber in the field; they lost energy and therefore turned more sharply and
remained inside the magnet. To prevent them re-entering the absorber after one turn, a small
transverse (y-direction) gradient of the magnetic field was introduced, causing the orbits
to drift sideways perpendicular to the gradient. Vertical focusing was added by means of a
parabolic term in the field. If the field is of the form

Bz = Bo(1 + a1y + b1y2) (45)

where a1 and b1 are small, an orbit of radius ρ moves over in the x-direction through
a distance s = a1πρ

2 per turn (called the step size). On average, the wavelength of the
vertical oscillations is 2π/b1/2

1 .
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Fig. 11. The first evidence of muons making several turns in an experimental magnet, shown in Fig. 10. The time
of arrival of the particles at a scintillator fixed inside the magnet is plotted horizontally (time increases to the left).
The first (right-hand) peak coincides with the moment of injection. The equally spaced later peaks correspond to
successive turns. Owing to the spread in orbit diameters and injection angles, some muons hit the counter after
nine turns (lower right), while others take 18 turns to reach the same point (Charpak et al., unpublished).

Fig. 11 is of historical interest. It shows the first evidence of particles turning several
times inside a small experimental magnet. These results gave the laboratory sufficient
confidence to order a very long magnet for the experiment.

An overall view of the final storage system [66, 67] is shown in Fig. 12. The magnet pole
was 6 m long and 52 cm wide, with a gap of 14 cm. Muons entered on the left through a
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Fig. 12. The 6 m bending magnet used for storing of muons for up to 2000 turns. A transverse field gradient makes
the orbit walk to the right. At the end a very large gradient is used to eject the muons which stop in the polarization
analyzer. Coincidences 123 and 466′57̄ signal an injected and ejected muon respectively. The coordinates used
in the text are x (the long axis of the magnet), y (the transverse axis in the plane of the paper) and z (the axis
perpendicular to the paper).

magnetically shielded iron channel and hit a beryllium absorber in the injection part of the
field. Here the step size s was 1.2 cm. Then there was a transition to the long storage region,
where s = 0.4 cm with the field gradient a1 = (1/B)(dB/dy) = 3.9 × 10−4/cm. Finally,
a smooth transition was made to the ejection gradient, where s = 11 cm per turn. After
ejection, the muons fell onto the polarization analyzer Fig. 13, where they were stopped
and decayed to e+.

The time t spent by a muon in the field was determined by coincidences in counters
123 at the input, and counters 466′57̄ at the output. The time interval was measured with a
10 MHz crystal. The shimming of this large magnet to produce the correct gradients was
a tour de force. This was assisted by the theorem that in weak gradients the flux through a
wandering orbit is an invariant of the motion. Therefore, if the field along the centreline of
the magnet was constant, unwanted sideways excursions would be avoided, and this could
be checked more exactly by moving a flux coil, of the same diameter as the orbit, all along
the magnet.

However, the constant flux theorem implied that once the particle was trapped inside
the magnet it would never emerge. This was seen as a major difficulty, because the final
spin direction could only be measured by stopping the muon in a weak or zero magnetic
field: otherwise, one would lose track of the spin direction while waiting for the muon to
decay. For weak gradients and slowly walking orbits, calculations using the first particle
tracking program on a computer confirmed these doubts, and some participants lost faith in
the project. Fortunately, it was found that in large gradients, of order ±12% over the orbit
diameter, the particles were ejected successfully.

The muons were trapped in the magnet for 2–8 µs depending on the location of the orbit
centre on the varying gradient given by Eq. (45). About one muon per second was stopped
finally in the polarization analyzer, and the decay electron counting rate was 0.25/s.
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Fig. 13. The polarization analyzer. When a muon stops in the liquid methylene iodide E a pulse of current in coil
G is used to flip the spin through ±90◦. Backward or forward decay electrons are detected in counter telescopes
66′ and 77′. The static magnetic field is kept small by the double iron shield H , I and the mumetal shield A. The
muon must pass the thin scintillator 5, backed by plexiglass C . D is a mirror used for alignment.

The spin direction can, in principle, be obtained from the ratio of two counting rates
measured in different directions. But if two counter telescopes are used (say one forward
and one backward relative to the direction of the arriving muons), it is not easy to ensure
that they have equal efficiencies and solid angles. It is more reliable to use only one set
of counters, but to move the muon spin direction after it has stopped. This can be done
with a small constant magnetic field, but it is more efficient to turn the spin rapidly to a
new position by applying a short, sharp magnetic pulse with a solenoid wound round the
absorber in which the muon is stopped. This flipping was accomplished within 1 µs, and
after that the gate that selected the decay electrons was opened.

In the apparatus shown in Fig. 13, the electron counts c+ and c− in the forward
telescope 77′ were recorded in separate runs with the spin flipped through +90◦ and −90◦
respectively. The asymmetry A of these counts was then related to the initial direction θs

of the muon spin (before flipping) relative to the mean electron direction subtended by
telescope 77′:

A ≡ (c+ − c−)
(c+ + c−) = A0 sin θs . (46)

By flipping instead through 180◦ and 0◦ another ratio, proportional to A0 cos θs , was
measured; so θs could be determined completely. Similar, but independent, calculations
were made for the telescope 66′, which recorded the decay electrons emitted backwards.
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Fig. 14. Asymmetry A of observed decay electron counts as a function of the storage time t . The time t spent
in the magnet depended on the transverse position of the orbit on the parabolic magnetic field (45). The muons
that were stored for 7.5 µs made 1600 turns in the magnet and then emerged spontaneously at the far end. The
sinusoidal variation results from the (g − 2) precession; the frequency is measured to ±0.4%.

This polarization analyzer was first used to study the muon beam available for injection.
For muons that had been through the magnet, the analyzer recorded the asymmetry A as
a function of the time t that the particle had spent in the field. This showed a sinusoidal
variation due to the (g − 2) precession in the magnet. Using Eqs. (20) and (46), it follows
that

A = A0 sin θs = A0 sin{a(e/mc)Bt + φ} (47)

where φ is an initial phase determined by measuring the initial polarization direction and
the orientation of the analyzer relative to the muon beam.

The experimental data are given in Fig. 14, together with the fitted line obtained by
varying A0 and a in Eq. (47). Full discussion of the precautions that are necessary to
determine the mean field B seen by the muons, and to avoid systematic errors in the initial
phase φ, are given in [67]. The results of this experiment [66, 67] are given in Table 6
(Section 8.11). The first experiment gave ±2% accuracy in a and this was later improved
to ±0.4%. The figures agreed with theory within experimental errors. The corresponding
95% confidence limit for the photon propagator cut-off, Eq. (1), was Λ > 1.0 GeV.

This was the first real evidence that the muon behaved so precisely like a heavy electron.
The result was a surprise to many, because it was confidently expected that g would be
perturbed by an extra interaction associated with the muon to account for its larger mass
[34, 35]. When nothing was observed at the 0.4% level, the muon became accepted as a
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Fig. 15. The Berkeley storage system: muons enter from the right and spiral through the upper magnetic mirror
into the solenoid. The mirror is then switched on to trap the particles. Decay electrons pass through the lower
mirror to the detectors e1, e2.

structureless point-like QED particle, and the possibility of finding a clue to the µ–e mass
difference now appeared more remote.

5. Berkeley cyclotron 1960–1968

An alternative approach was pursued at Berkeley using a muon beam from the 400 MeV
184” cyclotron in which the first man-made pions were produced. The apparatus was
modeled on the electron (g − 2) experiment of Crane et al. at Ann Arbor [7, 44]. They
trapped polarized electrons in a solenoid with magnetic mirrors at each end, switching the
mirrors on and off to allow the particles to enter and exit.

The Berkeley experiment [65], shown in Fig. 15, used a 2.8 T solenoid with a fixed
magnetic mirror at the bottom, 2% stronger than the main field, and a pulsed mirror at
the top. Muons coming from the right were slowed down in a boron carbide degrader so
that they began to spiral downwards into the centre of the field. When a particle passed
through the counter labeled “µ-counter” it triggered a spark gap which turned on the upper
magnetic mirror, trapping the muon for 6 µs or more.

The (g − 2) precession in the plane perpendicular to the field was observed in an
ingenious way. At a chosen time t after injection, a short pulse of current was applied
to a vertical rod running along the centre of the solenoid. This produced an azimuthal
magnetic field along the orbit, so any transverse components of spin were flipped into the
vertical plane, and this direction would be preserved until the muon decayed. The decay
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Fig. 16. Counts versus flip time t in the Berkeley experiment show a small (g −2)modulation. The fit determined
a to ±5.7%.

electrons emitted downwards had sufficient energy to punch through the lower magnetic
mirror and register in the detectors e1 and e2. The counting rate then depended on the
vertical component of the muon spin, which in turn tracked the radial component at the
time t when the spin was flipped. Results accumulated with various flip times t , plotted in
Fig. 16, show a (g − 2) modulation of rather small amplitude. Fitting the frequency [65]
gave a = 1060 (67)× 10−6.

We estimate the pitch correction in this case, Eq. (42), using the relation for particles
spiraling in a solenoid with variable axial field B . For small pitch angles ψ ,

�(ψ2) = �B/B. (48)

The magnetic mirrors at Berkeley had a field 2% greater than the main field, so ψ2 = 0.02
along the main track of a particle that was just reflected. One suspects that the majority of
the muons would have been close to this maximum angle, because the acceptance would
then have been the greatest. With ωp � ωa , Eq. (42) implies a pitch correction of 1%
increasing the observed value of a to 1071 (67) × 10−6 which is 8.1 ± 5.7% below the
theory.

The difficulty of the experiment resulted in an error rather larger than the measurement
with the CERN cyclotron. Injecting muons from outside into a high field solenoid is
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delicate. Only a narrow range of momenta and angles can lead to successful trapping.
(Crane side-stepped this problem by starting with an electron gun inside the field). In
consequence the counting rates of decay electrons were only 2/min. Optimizing the
experimental parameters under these conditions was a slow and tedious process. In the
circumstances, making the equipment work and getting a result must be regarded as a
heroic achievement.

6. First muon storage ring 1962–1968

6.1. Overview

By now the CERN proton synchrotron (PS) and Brookhaven alternating gradient
synchrotron (AGS) were operating, and the distinct properties of the two neutrinos νe

and νµ had been established [68], further emphasizing the parallel but dual behavior of
the muon and the electron. Muon pair production by 1 GeV gamma rays on carbon was
measured by Alberigi-Quaranta et al. [69] in agreement with theory. With this and the
(g−2) data, the evidence for point-like behavior was now much better for the muon than for
the electron. The scattering of muons by lead and carbon [70] agreed with the form factors
deduced from electron scattering. Logically this was the best evidence for the point-like
behavior of the electron, but was generally seen as another contribution to our knowledge
of the muon. Knock-on electrons from 8 GeV muons confirmed the picture [71]. Muonium
formation in high pressure argon had been observed by Hughes et al. [72], who went on
to measure the hyperfine splitting of the ground state confirming the theoretical picture to
one part in 2000 [73]. For this and subsequent muonium experiments the (g − 2) result
was an essential input, not only for the g-factor, but also for deducing the muon mass from
the precession frequency at rest, now determined to 16 ppm by Hutchinson et al. [74]; see
Eqs. (17) and (20).

The muon (g − 2) experiment was now the best test of QED at short distances. For this
reason, and to search again for a new interaction, it was desirable to press the accuracy
of the experiment to new levels. It would be essential to increase the number of (g − 2)
cycles observed, either by increasing the field B or by lengthening the storage time. With
the CERN PS available, it was attractive to see what could be done by using high energy
muons with relativistically dilated lifetimes. As there is no factor γ in Eq. (20), the (g − 2)
precession frequency would not be reduced, and more cycles would be available before
the muons decayed. But to store muons of GeV energy in a magnetic field and measure
their polarization required totally new techniques. Farley [75] proposed to measure the
anomalous moment using a muon storage ring.

The experiment is made possible by four miracles of Nature. (First identify your
miracle, then put it to work for what you wish to do!) The first miracle is that it is easy to
inject muons into a storage ring. One simply injects pions for a few turns; they decay in
flight and some of the muons produced will fall onto permanently stored orbits. The easy
way to inject pions is to put the primary target of the accelerator inside the storage magnet
and hit it with high energy protons, thus producing the pions inside the ring. The second
miracle is that the stored muons come from forward decay, so they are strongly polarized.
The third miracle is that when the muons decay the electrons have less energy; they are
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Fig. 17. The first muon storage ring: diameter 5 m, muon momentum 1.3 GeV/c, time dilation factor 12. The
injected pulse of 10.5 GeV protons produces pions at the target, which decay in flight to give muons.

bent by the field and come out on the inside of the ring; the higher energy electrons must
come from forward decay so as the spin rotates, the electron counting rate is modulated at
the (g − 2) frequency (∼270 kHz). One just reads it off.

A great advantage of this method is that it works equally well for µ+ and µ−. Most
muon precession experiments can only be done with µ+, because stopped µ− are captured
by nuclei and largely depolarized.

It was later realized that the injected muons would be localized in azimuth (injection
time 10 ns, rotation time about 50 ns), so the counting rate would also be modulated at
the much faster rotation frequency (∼20 MHz). This would enable the mean radius of
the stored muons to be calculated, leading to a precise knowledge of the corresponding
magnetic field.

The first muon storage ring [76–78] was a weak focusing ring (Fig. 17) with n = 0.13,
orbit diameter 5 m, a useful aperture of 4 cm×8 cm (height ×width), a beam momentum of
1.28 GeV/c corresponding to γ = 12 with a dilated muon lifetime of 27µs. The mean field
at the central orbit was B̄ = 1.711 T. The injection of polarized muons was accomplished
by the forward decay of pions produced when a target inside the magnetic field was struck
by 10.5 GeV protons from the CERN PS. The proton beam consisted of either two or
three radio-frequency bunches (fast ejection), each ∼10 ns wide, spaced by 105 ns. As the
rotation time in the ring was chosen to be 52.5 ns, these bunches overlapped exactly inside
the ring. Approximately 70% of the protons interacted, creating, among other things, pions
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of 1.3 GeV/c that started to turn around the ring. The pions made, on an average, four turns
before again hitting the target, and in each turn about 20% decayed.

The muons created in the exactly forward decay, together with undecayed pions and
stable particles from the target, eventually hit the target and were lost. However, the decay
of pions at small forward angles gave rise to muons of slightly lower momentum, and some
of these fell onto orbits that missed the target and remained permanently stored in the ring.
Thus the perturbation, essential for inflection into any circular machine, was here achieved
by the shrinking of the orbit, arising from the change of momentum in π–µ decay (and to
some extent by the change in angle at the decay point, which could leave the muon with
a smaller oscillation amplitude than that of its parent pion). The muons injected in this
way were forward polarized, because they came from the forward decay of pions in flight.
About 200 muons were stored per PS cycle. The muon injection was accomplished in a
time much shorter than both the dilated muon lifetime (27 µs) and the precession period
of the anomalous moment (3.7 µs).

6.2. Injecting muons into storage rings

The number of muons Nµ stored per interacting proton depends on the method of
injection and the ring parameters; (i) the aperture of the storage ring (u in the horizontal
plane, v in the vertical); (ii) the radius r of the ring; (iii) the magnetic field B; and (iv) the
field index n = (r/B)(dB/dr).

Nµ = F
u3v

r4
n1/2(1 − n)5/2 · pπ · Y (49)

where Y is the yield of pions (per GeV/c and steradian), which depends on the proton and
the pion momenta, and F is a numerical factor. The formula is the product of the following
factors: the angular acceptance in the vertical plane n1/2(v/r), the angular acceptance in
the horizontal plane (1 − n)1/2(u/r), the momentum bite for the pions (1 − n)(u/r)pπ ,
and finally the accepted fraction of the muon momentum spectrum (1 − n)(u/r). In F the
probability of the pions decaying while crossing the storage volume must be included. This
probability is high when protons are injected onto an internal target in the ring, because the
pions can make several turns; it is lower in the case of pion injection through an inflector;
and it is very low in the case of trapping by backward decay. In F the losses due to the
decay angles must also be included.

Three methods are available for inserting muons into the storage volume of the ring:

(i) by injecting protons and having them interact with a target located at the outer edge
of the storage region;

(ii) by injecting pions of the right momentum so that they cross the storage volume and
have a good chance to produce trapped muons, either by forward or by backward
decay;

(iii) by directly injecting muons of the desired momentum and putting them onto stable
orbits by means of a fast kicker.

The first method is the easiest and was used in this experiment. The pions of the
correct momentum, produced in the internal target, travelled around the ring for about
four revolutions before returning to the target; most of them decayed before this, and the
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muon capture yield from the circulating pions was fairly high. Pions with wrong momenta
travelled a short distance round the ring, but their much greater number meant that a
considerable number of extra muons were also trapped. These muons were emitted at large
angles in the pion rest frame, so the average longitudinal polarization observed was only
26% compared with 95% expected. Furthermore, when protons were injected, the general
background close to the target was very high, and the decay electron counters had to be
located on the opposite side of the ring (see Fig. 17). The method of injection used in
this first muon storage ring had the advantage of being technically simple, but it had the
following disadvantages:

(i) low muon polarization due to muons from a wide range of pion momenta;
(ii) high general background;

(iii) contamination with electrons at early times;
(iv) low average trapping efficiency.

In early tests a magnetic horn was used around the target to concentrate pions of the
correct energy in the forward direction. This gave a good muon polarization, but because
of increased background it was not finally adopted. The other methods of injecting muons
are discussed below.

6.3. Muon polarization

With pion injection, the final muon polarization is controlled by the decay kinematics
of the π–µ system. A useful general result can be derived as follows.

Suppose that particles of fixed momentum p∗ and energy E∗ are emitted with angular
distribution dN/dΩ∗ = f (θ∗) in a system moving with velocity βc · c in the laboratory.
θ∗ is the angle in the moving system relative to the direction of motion and Ω∗ the solid
angle. With γc = (1 − β2

c )
−1/2 the energy of the particle in the laboratory will be given by

the Lorentz transformation

Elab = γc{E∗ + βc p∗ cos θ∗}. (50)

As

Ω∗ = 2π(1 − cos θ∗)
dΩ∗ = −2π d(cos θ∗)
dElab = (βcγc p∗/2π) dΩ∗,

so

dN/dElab = (2π/βcγc p∗)(dN/dΩ∗) = (2π/βcγc p∗) f (θ∗). (51)

The parameters βc, γc and p∗ are all independent of θ∗, so (51) shows that the energy
distribution in the laboratory has the same functional form as the angular distribution in
the moving system. If one of these is known, the other can be inferred.

As the π–µ decay is isotropic in the pion frame, f (θ∗) = const, and the spectrum of
muon energy in the laboratory is flat. At high energies all the particles are relativistic and
the muon momentum spectrum dN/d p is also effectively flat. The maximum from forward
decay is just beyond the original pion momentum (because the backward going neutrino
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gives the muon a small forward boost); the minimum is at 42% of the pion momentum.
Within this spectrum there is a 1:1 correlation of decay angle θ∗ with the laboratory energy
Elab. So the selection of stored muon momenta by the ring magnet in effect selects the
decay angles in the pion frame, and the average value of cos θ∗ gives the muon polarization.

Typically the pions go round the magnet with momentum 1–2% above the nominal
central momentum. Muons with the top energy follow the same orbit as the pions and
will eventually hit something and be lost. But muons with 1–3% lower momentum fall
onto permanently stored trajectories. Because they come from almost forward decay the
polarization is of order 97%.

6.4. Muon decay in flight

In the case of muon decay to electrons in flight the situation is more complicated because
there is a spectrum of decay electrons in the muon frame and this will smear the one-to-
one correlation of Elab with θ∗, but Eq. (51) applies for each decay electron energy. The
angular distribution of electrons in the muon frame is given by

dN(y, θ∗) = n(y){1 − A(y) cos θ∗} dy dΩ∗ (52)

where y = p∗/p∗
max defines the electron momentum p∗, the angle between the muon spin

and the electron momentum is θ∗ and Ω∗ is the solid angle, both in the muon frame. The
momentum spectrum and angular distribution are given by the Michel formulae [79]

n(y) = 2y2(3 − 2y), A(y) = 2y − 1

3 − 2y
. (53)

The spectrum rises almost linearly from zero at p∗ = 0 to a peak at the top energy. The
asymmetry A is −1/3 at very low energy, changes sign at y = 1/2 and rises to 1 at the top
energy.

When the muon decays in flight the electron energy is boosted by the Lorentz
transformation (50). In the laboratory the spectrum (53) becomes a falling triangle with
maximum number at low momentum dropping to zero at the end point which is equal
to the momentum of the stored muons, Fig. 18. To have this maximum momentum in
the laboratory, the electron must be emitted exactly forward and have the top energy
in the muon frame; so the asymmetry for these particles in the laboratory is A = 1.
These particles carry the maximum information about the muon spin, but there are none
of them. At lower laboratory energy a mixture of electron energies and decay angles
can contribute; the number rises and the asymmetry falls, crossing zero at about 30%
of the muon momentum. Put simply, to have high energy in the laboratory, the electron
must be emitted forwards in the muon frame. So by recording high energy decays one
selects forward decays and as the muon spin rotates the number is modulated according to
Eq. (52).

The highest energy decays in the laboratory frame have the same momentum as the
muons, and are trapped in the magnet. But those with lower energy are bent more and
exit the field on the inside of the ring. Here many of them hit one of the lead-scintillator
detectors in which they produce an electron–photon shower with the result that the light
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output is proportional to the electron energy. By selecting pulse height in the detector one
selects a band of decay electron energies.

To optimize the experiment one needs to calculate the energy spectrum and asymmetry
for the decay electrons which actually hit a detector. To do this one generates decay events
in the computer, tracks the electron through the magnetic field and decides whether it
arrives at a detector or is lost in some way. To compute the average asymmetry for the
subset of particles which hit a detector it is convenient to treat the asymmetry as a vector

whose direction is along the electron momentum in the muon frame and whose length is
given by A(y) in (53). Then if the direction of the muon spin direction is given by the unit
vector , Eq. (52) can be rewritten using the scalar product · (y) to read

dN(y, θ∗) = n(y){1 − · (y)} dy dΩ∗. (54)

Summing over N decays, the overall asymmetry for a given set of electrons (for example
those that have a particular energy and hit a particular detector) will be given by the average
vector

mean = (1/N)
N∑
1

(y). (55)

This is easy to compute and is valid for any muon spin direction. The length of mean gives
the magnitude of the asymmetry and its direction gives the phase of the (g − 2) precession
to be expected. The results of a typical calculation are given in Fig. 18.

Summarizing this section, the muons precess inside the storage ring according to (20).
When they decay the electrons emerge on the inside of the ring where they hit the detectors
and produce a pulse proportional to their energy. By selecting high energy decays, one
selects forward decay in the muon rest frame; so as the spin rotates the number of electrons
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is modulated by the (g − 2)-precession and the frequency can be read from the record of
counts versus time, Fig. 19.
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6.5. Experimental details and results

The dilated muon lifetime was now 27 µs so the muon precession could be followed
out to storage time t = 130 µs as shown in Fig. 19. Data for t less than 20 µs could not
be used because of background due to neutrons and other effects created when the protons
hit the target in the ring. The initial polarization angle of the muons is not needed for the
measurement: one just fits the oscillations that are seen. With thirty (g − 2) cycles to fit,
the accuracy in ω was now much better. Fitting a frequency ω to exponentially decaying
oscillations the error is

δω/ω =
√

2

ωτ A
√

N
(56)

where N is the total counts, τ the dilated lifetime and A the amplitude of the oscillations
(asymmetry). To get good accuracy one should increase the number of cycles per lifetime
by using high magnetic field and high energy, and maximize the product N A2. The best
value of N A2 was obtained by accepting decay electrons above 780 MeV see Fig. 18.

The results for electron energy above this threshold were fitted by varying eight
parameters in the function

N(t) = N0(1 + ALe−t/τL )e−t/τ {1 − A cos(ωat + φ)} + W. (57)

In this expression the small correction term with parameters AL and τL takes account
of an excess of counts at early times over the extrapolated late time exponential. This is
ascribed to muon losses caused by orbit perturbations. W is the late time background.
The fitted frequency ωa was insensitive to the starting time of the fit. To calculate the
anomalous moment a from the fitted frequency using Eq. (28) one needs the mean proton
NMR frequency ωp corresponding to the average magnetic field seen by the stored muon
population.

The magnetic field was surveyed between runs at 288 positions in the azimuth and ten
radii. During the runs it was monitored by four plunging NMR probes which could be
driven into the centre of the aperture. The radial magnetic gradient needed for vertical
focusing implied a field variation of ±0.2% over the horizontal aperture of the storage ring
(8 cm), so a major problem was to know the mean radius of the ensemble of muons that
contributed to the data. This was obtained from the rotation frequency of the muon bunch
shortly after injection. The data from t = 1.5–4.5µs is shown in the lower curve of Fig. 19.

The muons are bunched at injection so there is a strong modulation of the counts at
the rotation frequency. As they slowly spread around the ring, because of their range of
momenta and correspondingly different rotation periods, the modulation gradually dies
away. The envelope of the modulation is the Fourier transform of the frequency spectrum,
or equivalently of the radial distribution. By making the inverse transform one recovers
the radial distribution of the muon equilibrium orbits, Fig. 20. Using this and the map
of the magnetic field, the mean field for the muon population is readily calculated. A
conservatively assigned error of ±3 mm in radius implied an error of 160 ppm in the
field.

This method of finding the muon radius has one elegant advantage: it uses the same
decay electron data as for fitting the (g − 2) frequency. In principle muons at larger radii
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have less chance of sending an electron to the counters than muons on the inside of the
ring; so there is a bias, which should be corrected. But as the same detectors are used for
finding the mean radius and for fitting the (g − 2) this error cancels out. Further details,
together with checks to ensure that the measurement at early times was representative of
the muon population at later times when the (g − 2) precession was measured, are given in
[78] and the review article [51].

To calculate a from ωa using (28) one needs the value of λ. At that time the best
measurement was the experiment by Hutchinson et al. [74] of µ+ precession in water,
combined with the calculation of Ruderman [80] on the diamagnetic correction for muons
in water. The result [77, 78] was

a = (116 616 ± 31)× 10−8 (270 ppm). (58)

Initially, this was 1.7 standard deviations higher than the theoretical value, suggesting that
there was more to be discovered about the muon. In fact the discrepancy resulted from
a defect in the theory. Theorists had originally speculated that the contribution of the six
(α/π)3 diagrams involving photon–photon scattering (see Fig. 1(f)) in the QED expansion
for a would be small, and perhaps these terms would cancel exactly; but they had never
been computed. The experimental result stimulated Aldins, Kinoshita, Brodsky and Dufner
[81] to make the calculation and they obtained the surprisingly large coefficient of 18.4!
The theory then agreed with the measurement, to the great satisfaction of the experimental
team;

aexp − ath = 240 ± 270 ppm. (59)

The limit for the Feynman cut-off, Eq. (1), was now Λ > 5 GeV.
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An auxiliary result of the muon storage ring was the measurement of the lifetime for
particles in a circular orbit as a check on the Einstein clock paradox [82]. The time dilation
in a circular orbit was confirmed to 1%. The measured lifetime, (26.3 ± 0.05) µs, was
1.2% shorter than the expected value of 26.69 µs with a statistical error of only ±0.2%.
The discrepancy was ascribed to a slow loss of muons due to imperfections in the magnetic
field. A more precise verification of the Einstein time dilation is described below.

7. Second muon storage ring 1969–1976

7.1. Motivation

By 1969 an electron–electron colliding-beam experiment [83] had demonstrated the
point-like nature of the electron (Λγ > 4 GeV, Λe > 6 GeV), and e+e− storage rings were
giving useful data on vector meson production [84]. Experiments on e+e− and µ+µ− pair
production, on wide-angle bremsstrahlung and a comparison of e–p and µ–p scattering
were all in accord with theory. Muon pair production [85] by muon bremsstrahlung (with
two identical muons in the final state) showed that the muon obeyed Fermi–Dirac statistics.
For reviews see [86].

The pure quantum effects were less satisfactory. The Lamb-shift data [87] were
consistently higher than theory, but this was resolved by a recalculation of a small
theoretical term by Appelquist and Brodsky [88]. The electron (g − 2) data of Wilkinson
and Crane [44] had been rediscussed by Farley [40], Henry and Silver [65] and by Rich
[89] who concluded that ae

exp−ae
th = −(79±26) ppm. This discrepancy was to be resolved

in a new measurement by Wesley and Rich [90]. Thus QED was doing well, but in early
1969, aµ, ae and the Lamb shift all showed uncomfortably large departures from theory.
It could have been the beginning of something new.

The major motivations for carrying out a third measurement were therefore as follows:

(i) to look for departures from standard QED;
(ii) to detect the contribution of strong interactions to aµ through the hadron loops in the

vacuum polarization, see Section 2.3;
(iii) to search for new interactions of the muon.

7.2. General design

The third CERN (g − 2) experiment [45, 91, 92] was inspired by the first muon storage
ring and the main challenge lay in the systematic difficulties of the last experiment. The
announced objective [45, 93] was an accuracy of 20 ppm; the error finally quoted was
7 ppm. The design was an attempt to overcome the major sources of uncertainty in the
previous experiment, which can be summarized as follows:

(i) The radial magnetic gradient required to provide the vertical focusing implied a
magnetic field variation of ±0.2% over the aperture in which the muons were
stored, and a corresponding radial dependence of ωa . Even if the mean radius
was determined precisely after injection, uncertainties in radius at the new level of
accuracy would arise from uncontrolled muon losses.
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(ii) The burst of particles created in the ring at injection upset the counting system
and also produced a non-rotating background at early times, which made the
interpretation of the data collected in the first few microseconds difficult.

(iii) In spite of careful shaping of the magnetic field, there were small muon losses up to
at least 100 µs after injection.

The new project overcame the previous systematic troubles by introducing the following
improvements:

(i) Using a ring magnet with a uniform magnetic field and focusing vertically with an
electric quadrupole field. For the particle orbits this field is equivalent to a weak
gradient in the magnetic field.

(ii) Injecting a momentum-selected beam of pions, instead of protons, into the ring in
order to reduce the background.

(iii) Reducing the loss of muons by more precise field shaping and by using an electric
scraper.

(iv) Increasing the intensity of the stored muons to improve the statistical accuracy in ωa .
(v) Increasing the product B ·γ , thus increasing the number of (g−2) cycles per lifetime,

and therefore increasing the precision in ωa .

The previous experiment showed that in a gradient field, even if the determination of the
radial distribution from the muon rotation frequency was very precise, uncertainties about
muon losses would give a significant error in the mean radius. Since the relative tendency
of muons at different radii to be lost is unknown, the essential problem was to achieve
focusing but remove the dependence of ωa on the radius. This can be achieved in principle
because the forces that hold the muon in its orbit, and give focusing for small deviations
from equilibrium, arise from what appears, in the muon rest frame, as an electric field; but
the spin precession is determined by what appears in the rest frame as a magnetic field.
These two fields may therefore be varied independently by applying suitable magnetic and
electric fields in the laboratory.

The idea in the new experiment was to use a completely uniform magnetic field, so
that the (g − 2) frequency would be independent of muon radius and it would no longer
be necessary to know where the muons were. But uniform magnets have no vertical
focusing; instead an electric quadrupole with constant sign would be installed around the
stored beam, giving a vertical restoring force. The associated horizontal defocusing would
slightly reduce the strong semicircular focusing effect of the magnet. The combination
behaves, to a good approximation, just like a weak focusing magnet with radial gradient
(see Section 7.3).

However the radial electric field of the electric quadrupole can change the (g − 2) fre-
quency. This was a well known effect considered in the electron (g − 2) experiments [44].
As the strength of the electric field would vary with radius, the muon (g − 2) frequency
would still be a function of the radius, and nothing would be gained. The solution was to
work at the “magic” momentum at which radial electric fields do not affect the (g − 2)
frequency.

Muon precession in combined magnetic and electric fields is discussed in Section 3.2
above. Referring to Eq. (32) one sees that the condition for radial electric fields to do
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nothing is β2γ 2 = 1/a. This determines the “magic” momentum 3.094 GeV/c which was
chosen for the second muon storage ring. The fourth miracle of Nature (Section 6.1) is that
this momentum was extremely convenient. It was easily available from the CERN proton
synchrotron and was a natural step up from the previous 1.28 GeV/c. The muon lifetime
would be dilated to 64 µs.

7.3. Electric focusing

Using transverse coordinates x radial and z vertical relative to the central orbit in
a uniform magnetic field B with electric quadrupoles all around the orbit giving fields
Ex = −kx, Ez = kz, the vertical force on a particle of charge e at height z is

ekz. (60)

If on the other hand the magnet had a radial gradient with field index

n ≡ − r

B

dB

dr
(61)

the radial component of magnetic field at height z is found by using curl B = 0, giving
Br = z · (dBr/dz) = n(z/r)(dBz/dr), so the vertical magnetic force would be

eβBnz/r. (62)

Equating (60) and (62) one finds that the electric quadrupole is equivalent to a weak
magnetic gradient with

n = kr

βB
= 2r V

βB(u2 + v2)
(63)

where V is the voltage applied to the quadrupole electrodes with horizontal separation 2u
and vertical separation 2v.

In a magnetic gradient the difference in horizontal force on a particle at radial distance x
outside the central orbit, compared to the force on the central orbit, is eβBnx/r . Equating
this to the horizontal force at the same position in the electric quadrupole ekx , one finds
again Eq. (63). So in both planes the electric quadrupole is equivalent to a weak magnetic
gradient. All the established doctrine for focusing particles in such a magnet therefore
applies using the equivalent magnetic gradient defined by (63): for further discussion see
[94].

The voltage to be applied to the electric quadrupoles disposed continuously round the
ring with half-aperture u (horizontal) ×v (vertical) is

V = n
βpc

2e

u2 + v2

r2 ∼ 22 kV (64)

In practice the electrodes were not continuous in azimuth and the voltage was increased
in inverse proportion to the fraction of the ring occupied by the quadrupoles. The discrete
quadrupole pattern produces an alternating gradient effect which increases the focusing by
a small amount, but the analogy with a continuous weak focusing magnetic ring is still
very close.
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7.4. Electric field correction

The magic momentum, for which the electric field has no effect on the spin motion, is
correct at the centre of the aperture, where the electric field is in any case zero. At larger
radii the momentum is greater than the magic one and the electric force is outwards: the
(g − 2) frequency is reduced. At lower radii the momentum is below the magic one but the
electric field is reversed and the (g − 2) frequency is again reduced. The combination of
two linear effects makes the (g − 2) frequency vary parabolically across the aperture with
its maximum at the centre: for the average muon, a correction must be applied.

Differentiating Eq. (32) with respect to particle momentum p = βγmc one finds

�ω

ω
= 2βE

B

�p

p
. (65)

The particle momentum is determined by its equilibrium radius xe (relative to the centre of
the aperture) and the horizontal electric field by its instantaneous position x . Using

�p

p
= (1 − n)

xe

r

and with help from (63)

E = kx = nβB(x/r)

one finds

�ω

ω
= 2n(1 − n)β2 xxe

r2 . (66)

For a given particle, if the quadrupole field is perfect, with the result that the horizontal
oscillations around the equilibrium orbit are sinusoidal, the time-average value of x is xe.
Indicating the average over all particles by the symbols 〈〉 the correction is

�ω

ω
= 2n(1 − n)β2 〈x2

e 〉
r2

. (67)

To find the correction it is necessary to compute (or measure) 〈x2
e 〉. If the muons

populate the available phase space uniformly in a rectangular aperture ±u, the distribution
of equilibrium orbits for xe > 0 is N(xe) ∝ (xe − u)2 with a similar expression for
xe < 0; two parabolae meeting at a cusp in the centre of the aperture. One readily finds
〈x2

e 〉 = u2/10. With β ∼ 1, the correction to be applied, increasing the observed (g − 2)
frequency to get the true value, is

�ω/ω = 0.2n(1 − n)(u/r)2. (68)

This storage ring had horizontal half-aperture u = 6 cm and radius r = 7 m, so with
n = 0.14 the correction was 1.7 ppm.

7.5. Pion injection

The system for injecting muons into the ring was designed to give maximum muon
polarization, minimum background and as large an intensity as possible. A high value of
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the longitudinal polarization can be achieved by starting with a momentum-selected pion
beam, and accepting only decay muons with momenta in a narrow band just below the
pion momentum. It was therefore decided to locate the primary target outside the storage
ring, and guide a momentum-selected pion beam into the ring via a pulsed inflector. The
pions would inevitably hit the large inflector structure after making only one turn; and the
useful aperture of the inflector would be very small. The loss of intensity due to these
factors could be compensated by using special beam optics to collect pions over a large
solid angle and match them to the acceptance of the inflector.

The pions of 3.2 GeV/c must be brought to a point just outside the muon storage region,
where they should be traveling tangentially. This can only be achieved by canceling the
main magnetic field along the pion track and this was the task of the pulsed inflector. The
inflector was in the form of a coaxial line in which a 10 µs pulse of peak current 300 kA
produced the required field of 1.5 T between the inner and outer conductors. The metal
walls were thick enough to keep this pulsed field out of the muon storage region (a small
amount of leakage was observed and a correction was applied for this to the (g − 2) data).

The technical difficulty of this method of injection was outweighed by the increased
pion flux and the high longitudinal polarization (95%) of the stored muons. This was
confirmed by the large modulation of the decay electron counts. The calculated polarization
direction was independent of the muon equilibrium radius; and consequently any possible
asymmetric muon losses should cause no significant shift in the measured spin precession
frequency.

The background was reduced considerably with respect to the previous experiment so
that the electron detectors could now be located all around the ring. But it was still much
larger than expected and our understanding of this effect is discussed below (Section 7).

7.6. Ring magnet

For a given momentum the maximum accuracy in ωa is obtained by working at the
highest magnetic field. The actual field of 1.47 T was chosen to meet this requirement
without jeopardizing good field uniformity and corresponded to an orbit radius of 7 m. The
field had to be as uniform as possible so that the (g − 2) frequency of all the muons would
be the same. As the muons sample the field all the way round the ring, this meant that, after
averaging in azimuth, the field should be independent of the radius.

The field could not be measured while the muons were stored. The magnet had to be
switched off to remove the vacuum chamber and install the NMR equipment, which took
a few days. Then the magnet was switched on again and the field was surveyed. To run the
muons again, the procedure was reversed, which again implied turning the magnet off and
on. Therefore it was essential that the field should be stable and reproducible to a few parts
per million (ppm).

The desired stability was obtained in the following way: [95, 96]:

(i) The magnet was built on an isolated ring of concrete, temperature stabilized by
circulating water through internal pipes.

(ii) The experiment was constructed in a building at controlled temperature.
(iii) To obtained mechanical stability, the magnet consisted of 40 separate blocks,

mounted individually on the floor but not connected to each other.
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Fig. 21. The second muon storage ring, which consisted of 40 contiguous magnet blocks. The open side of the
C-shaped yoke (upper right) faces the centre of the ring. The cross-section of the vacuum chamber and electric
quadrupole is shown bottom right. The decay electrons are detected by 20 counters. Dimensions are in mm.

(iv) The coils did not touch the iron but were supported independently from the floor on
arms that could deflect elastically to allow for thermal expansion, returning always
to the same position. Most magnets emit creaks and groans when turned on, as the
components slide past each other in response to magnetic forces and thermal effects.
This magnet was entirely silent.

(v) The field in each of the 40 blocks was separately stabilized with reference to an NMR
probe located in the median plane, radially just outside the muon storage region [97].
Error signals generated a compensating current in subsidiary coils installed in each
block. Pickup coils in the feedback loop eliminated rapid field changes.

As can be seen from Fig. 21, the second muon storage ring consisted of 40 C-shaped
bending magnets, each about 1 m long, fitted together to form a regular polygon with open
sides facing the centre of the ring. The pole was 38 cm wide with 14 cm gap. The pole
pieces were cut at an angle of 4.5◦ at each end so that they fitted together. However the
yokes were not fitted together and consequently the field at each junction was reduced; this
drop in the field, after various adjustments in the geometry of the iron of the magnet, was
about 400 ppm. The magnets were energized together by four large circular coils providing
continuous current all the way round the ring. The field in each magnet was separately
stabilized by NMR probes mounted in the median plane, just outside the muon storage
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Fig. 22. A contour line plot of the magnetic field strength in the muon storage aperture. This map is obtained by
averaging a three-dimensional map in azimuth. The interval between the contours is 2 ppm. The muons spend
most of their time near the centre of the aperture where the field is almost uniform.

region, controlling the current through compensating coils wound around the yoke close to
each pole.

To bring the magnet into the same operating condition, a special switching-on procedure
was adopted; without it the field shape would have varied, and although the values at the
40 stabilizer probes were constant, temporary eddy currents or hysteresis in the yoke could
modify the distribution of magnetization in the iron and the overall average field in the
storage region could change by as much as 50 ppm. The procedure consisted of three rapid
up and down cycles of the main current to a value some 10% higher than the operating
point, followed by slow gradually decreasing oscillations of a few per cent in amplitude.
This cycling was controlled automatically and took about half an hour, after which point
the stabilization system switched on automatically.

Between runs the vacuum chamber was removed and the field was mapped at ∼250 000
points (1 cm vertical ×1 cm radial ×2 cm azimuthal). The raw proton resonance frequency
must be corrected [98] for the diamagnetic shielding in water (25.6 ppm) before it can
be used in Eqs. (28) and (69); see [97] for details, calibration and many precautions. A
contour plot of the field across the storage region, after averaging in azimuth, is shown
in Fig. 22. This was obtained by averaging the three-dimensional map in azimuth. The
interval between the contours of equal field strength is 2 ppm. Repeating the procedure
several months later gave almost exactly the same contour plot, as could be demonstrated
by subtracting the two pictures.

During data-taking runs the field was monitored in 37 of the magnets with small
NMR probes which could be driven into the muon storage ring along a radial line in the
median plane without breaking the vacuum. The 400 points at which these plunging probe
measurements were made were located within the coordinate system of the full field map
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by survey and the relationship between the two sets of readings determined. This allowed
the drift in the mean field to be followed throughout the periods between full-scale maps.

As a result of the cycling procedure and the stabilization at forty positions, the field in
the storage region followed a predictable pattern; as the magnet warmed up after switching
on, the average value rose by some 5 ppm over the first two days and then remained
constant to within ±1 ppm. The important consequence was that the magnet could be
turned on and off and, after the warm-up period, the field averaged over the muon orbit
would return to the same value within ±1 ppm [97]; this made it possible to do the
experiment with high accuracy. Further details of how this excellent result was achieved
are given in [96].

It is worth emphasizing the extreme insensitivity of the average value of magnetic
field 〈B〉 computed for different assumed radial distributions of muons. Even in extreme
cases the average magnetic field was the same within less than 2 ppm, compared with
the 160 ppm uncertainty in the previous experiment and the present statistical accuracy of
∼7 ppm. The (g − 2) frequency was essentially independent of the distribution of muons
within the storage region. However, an accurate value for the mean radius of the population
was needed for checking the Einstein time dilation (see below).

7.7. Electric quadrupoles and scraping

The electric quadrupole system has been described by Flegel and Krienen [99].
This quadrupole embedded in the vertical magnetic field resembles the well known
Penning gauge, in which ionization of the residual gas by trapped electrons leads to an
enhanced current. As a result electric breakdown in the residual gas can easily occur.
It was discovered that the build-up of ionization leading to a spark usually takes some
milliseconds, so the problem was minimized by turning the quadrupoles on for only ∼1 ms
during the time the muons were to be stored. The problem was worse whenµ− were stored,
as the quadrupoles were then perfect for trapping e−: in this case the vacuum had to be
better than 10−6 Torr.

Muon losses during the storage time can change the mean spin angle, if those that are
lost have different initial spin angle from those which remain. This was not a serious error
for the (g − 2)measurement, but for the measurement of the muon lifetime it was essential
to reduce the late-time muon losses to a minimum. This was done by shifting the muon
orbits at early times both vertically and horizontally in order to “scrape off” the muons
which passed near the edge of the aperture and were most likely to be lost.

The orbits were shifted by applying asymmetric voltages to opposite quadrupole plates
at injection time, and then gradually bringing them back to normal. This had the effect of
adding a uniform electric field which moved the equilibrium orbit. While one member of
a pair was pulsed normally with a 1 µs rise time, the other was fed with a 10 µs rise time.
To move the orbit vertically, the bottom electrodes, all the way round the ring, received the
slowly rising pulse, so the median plane of the muon orbits was initially low and returned
to its normal position with the 10 µs time constant. To move the orbit horizontally, the
inner electrodes on one side of the ring received the slow pulse, while on the other side the
outer electrodes received the slow pulse.
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The result was that the aperture of the ring was reduced both vertically and horizontally
during scraping, then gradually restored to normal with a time constant of about 60 turns.
This gradual change should not excite extra oscillations, so the net result was to leave a
clear space of a few millimeters between the stored muons and the electrodes. Then small
imperfections in the fields, leading to a slow growth of oscillation amplitudes, would not
cause muons to be lost.

7.8. Radial distribution
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Fig. 23. Counting rate versus time showing rotation pattern and (g − 2) modulation (online computer output for
one run). The Fourier transform of the rotation data gives the radial distribution of muons.

As before, the radial distribution of the muons is obtained by analyzing the pattern of
counts at early times when the data is modulated by the rotating bunch. In the example
shown in Fig. 23 one can see the rotation signal combined with the (g − 2) modulation.
The analysis yielded Fig. 24 in which the unscraped data agrees well with the prediction
and the narrowing of the distribution caused by scraping is clearly visible. The rotation
frequency ωrot depends on the relativistic γ factor which can be calculated directly from
the measurements:

γ = 2λωrot/gωp (69)

in which ωp is the proton frequency corresponding to the average magnetic field, λ =
ωs/ωp is given by (19) and g is of course known from this experiment to better than 1 in
108. Eq. (69) is used in checking the time dilation (Section 7.9).

The measurement of the radial distribution agreed with predictions assuming that the
muons populated the available phase space uniformly. This confirmed the assumption
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which was used to calculate the electric field correction (68) and pitch correction (44).
For n = 0.135, v = 4 cm, r = 700 cm, the pitch correction was 0.5 ppm. The statistical
error on the mean radius was typically 0.1–0.2 mm.

Fig. 25 gives the combined decay electron counts versus storage time for the whole
experiment, now showing the (g − 2) precession out to 534 µs with a strictly exponential
muon decay. The results were fitted with

N(t) = N0{L(t) exp(−t/τ) [1 − A cos(ωat + φ)] + W } (70)

in which the function L(t) = 1 + AL exp(−t/τL) is an empirical correction factor to
allow for muon losses and gain changes at early times, and W is late-time background.
A maximum likelihood fit was made to the data by varying the five main parameters,
N0, τ, A, ωa and φ together with the auxiliary parameters AL, τL and W in Eq. (70).

Nine separate runs were made over a period of two years and fitted separately. As the
field was determined in terms of the proton resonance frequency ωp , the measurement
of the (g − 2) precession frequency ωa is expressed as the ratio R = ωa/ωp . The nine
R-values, six for µ+ and three for µ−, were consistent (χ2 = 7.3 for eight degrees of
freedom). The overall mean value was the essential result of the experiment:

R = ωa/ωp = 3.707 213 (27)× 10−3(7 ppm). (71)

The error was 7.0 ppm statistical from ωa plus 1.5 ppm from ωp .
The corresponding value of the anomaly is given by Eq. (28) using the current result for

λ, Eq. (19). The result is slightly different from that published in [92] because the value of
λ has changed. Combining the data for µ+ and µ−,

a = 1 165 923 (8.5)× 10−9 (7 ppm) (72)

in agreement with the theory.
For further details of this experiment and the precautions taken, see the final report [92]

and the review article [51].

7.9. Muon lifetime in flight

Accurate measurements of the muon lifetime in a circular orbit provide a stringent test
of Einstein’s theory of special relativity. As a bonus it sheds light on the so-called twin
paradox, gives an upper limit to the granularity of space–time and tests the CPT invariance
of the weak interaction. The muon is an unstable particle, and can therefore be regarded as
a clock and used to measure the time dilation predicted by special relativity. Experiments
verifying the time dilation in a straight path have been made with cosmic rays and high
energy accelerators. Time dilation in a circular path has always seemed more controversial.

The twin paradox was discussed in Einstein’s first paper [100]. It is a paradox because,
if only relative motion is important, one can ask which twin moves and which remains at
rest? The difference is that to return to the same point, one twin must have suffered some
acceleration which the other (older) twin did not. It seems that, according to relativity,
the one with a history of acceleration finishes younger than the sessile partner; a result
which is hard for the human mind to grasp. Inevitably one asks, can this be true? Perhaps
some other effect comes into play, which ages the accelerated twin and makes the result
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Fig. 24. The Fourier transform of the rotation data for scraped and unscraped runs, compared to prediction.

symmetric after all. We know that acceleration is destructive, and more exactly acceleration
implies gravity and the gravitational red-shift in some situations offsets special relativity
exactly. There are many theories. The question can only be resolved by experiment.

Hafele and Keating [101] loaded cesium atomic clocks onto a commercial aircraft on
a round-the-world trip and verified the time dilation at low velocity with an accuracy of
about 10%. In the CERN Muon Storage Ring, the muon performs a round trip and so when
it is compared with a muon at rest the experiment mimics closely the twin paradox. The
circulating muons, although they return again and again to the same place, should remain
younger than their stay-at-home brothers. The stationary twin’s timescale is given by the
muon decay rate at rest determined in a separate experiment [102].

An accurate measurement of the muon lifetime in a circular orbit at γ = 29.3 requires
high orbit stability in a short time interval (a few hundred microseconds), for any loss
of muons will set a limit to the accuracy of the measurement. The reported stability was
achieved by using a scraping system (Section 7.7) that shifted the muon orbits at early
times in order to scrape off those muons most likely to be lost. A correction was made
for the residual loss rate (∼0.1% per lifetime) which was measured by a calibrated loss
detector.

Fitting the decay electron counting rate (see for example Fig. 25) gave the lifetime
in flight. A fit to the rotation frequency gave the radial distribution, Fig. 24, and the
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Fig. 25. The second muon storage ring: decay electron counts versus time (in microseconds) after injection. The
range of time for each line is shown on the right (in microseconds).

mean value of γ = 29.327 (4) was obtained from Eq. (69). Multiplying by the lifetime
[102] at rest 2.1971l (8) µs gives a predicted lifetime of 64.435 (9) µs compared to
the experimental value 64.378 (26) µs. So the Einstein time dilation was verified to
0.9 ± 0.4 parts per thousand. Further details are given in [103]. The method was also used
to determine the lifetime of negative muons, which cannot be measured at rest because
they are captured by nuclei.

This is the best reported measurement of time dilation in a circular orbit. More accurate
data is expected, but not yet available, from the Brookhaven muon storage ring to be
discussed next.

8. Brookhaven muon storage ring 1984–2003

The electroweak contribution to the muon (g − 2), Section 2.2, is the only
experimentally accessible quantity involving loops of virtual intermediate Z and W bosons.
In 1984 theorists were pressing for the measurement to be improved to check these
predictions. Vernon Hughes organized a workshop at Brookhaven1 to work out the general

1 The main participants were J. Bailey, H.N. Brown, F. Combley, G. Danby, S. Dhawan, F.J.M. Farley,
J.H. Field, P. Franzini, M. Giorgi, V.W. Hughes, J.W. Jackson, D. Joyce, F. Krienen, D. Lowenstein, W. Lysenko,
W. Marciano, M. May, M. Month, P. Nath, S. Parke, G. Petrucci, E. Picasso and R. Siegel.
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parameters of a new experiment and many of the collaborators in the CERN (g − 2)
experiments participated. An improvement in accuracy by a factor 20–0.35 ppm was taken
as the target, implying a 400-fold increase in the counting statistics [104]. A large part of
this would come from the increased intensity of the Brookhaven AGS, compared to the
CERN PS in 1975. (The CERN machine had also been upgraded, but was fully committed
as an injector to the SPS and LEP.)

It was decided to use once more a storage ring with uniform magnetic field and electric
focusing, working at the magic energy. The magnet aperture would be larger to give a more
uniform field and the field would be surveyed inside the vacuum chamber by a moving
trolley carrying 17 nuclear magnetic resonance (NMR) probes. Therefore the field could
be measured at any time without switching the magnet on and off. This trolley could not
be in place when the muons were stored, so to monitor the field between trolley runs about
360 fixed NMR probes were installed above and below the vacuum chamber.

To handle the large increase in counting rate, 24 separate electron calorimeters were
used and the counts from each were recorded and analyzed separately. To limit the peak
counting rate only one radio-frequency bunch of protons in the AGS was used at a time,
but to collect statistics a new bunch was ejected every 33 ms during the flat top, thus using
the whole intensity available from the accelerator. In effect, the experiment was repeated
12 times during each AGS cycle. Even so, there was some overlap of signals at early times
and special techniques were developed to correct for this. Increasing the beam intensity
implied a large increase in the neutron background generated at injection (“fl ash” ); this
problem was solved by injecting muons instead of pions.

The main improvements and changes in the Brookhaven experiment were as follows:

1. High proton intensity from AGS. The experiment ran with a maximum intensity
of 65 TP, i.e. 6.5 × 1013 protons per AGS cycle. The particles were delivered in
12 bunches, 33 ms apart, with an AGS cycle of about 3 s.

2. Superconducting inflector and shield. The inflector needs to cancel the 1.5 T main
field and could not be pulsed every 33 ms. It was operated in DC mode and an
ingenious design minimized the stray field in the storage region. The small leakage
field was completely eliminated by adding a superconducting shield.

3. Muon injection and fast kicker. The muon injection made effectively a factor of ten
more muons available for analysis. The combination of a better capture efficiency
and the reduction of the flash (permitting the detectors to be turned on earlier)
both contributed to this factor. The kicker, required for muon injection, and the
measurements of its eddy current are described below.

4. Muon injection and the fact that the inflector aperture did not fill the horizontal phase
space gave rise to coherent betatron oscillations, i.e. motion of the beam as a whole,
which needed to be included in the analysis.

5. Electrostatic focusing quadrupoles. The need to accommodate the kicker meant that
the azimuthal coverage available for the quadrupoles was 1.7 times smaller than
in the last CERN experiment. That meant that the electric field strength had to be
1.7 times higher for the same field focusing index. The combination of electric and
magnetic fields created ideal conditions for trapping low energy electrons which
multiplied rapidly leading to sparking. An ingenious design of the connecting leads
intercepted these electrons and led to reliable operation.



50 F.J.M. Farley, Y.K. Semertzidis / Progress in Particle and Nuclear Physics 52 (2004) 1–83

6. A single magnet provided the 1.5 T magnetic field uniform to 1 ppm when averaged
over azimuth. The variations in azimuth were at most ±100 ppm. It is the largest
diameter superconducting magnet in the world providing superb stability due to its
large L/R time constant.

7. The magnetic field was measured with a moving trolley every two to three days with
no need to break vacuum nor turn off the magnet. In between trolley runs, the field
was monitored by some 360 fixed NMR probes located above and below the vacuum
chamber.

8. Custom made, 400 MHz waveform digitizers were used to record the signal from
each decay electron. This made it possible to reconstruct the time and energy
spectrum of overlapping pulses, and to subtract them from the record.

9. The photomultiplier tubes were gated off during injection for periods which varied
from 4 to 50 µs around the ring. After this the gain of the system was stable to better
than 0.1% from early to late times. The timing stability was monitored by pulsing a
laser light onto the calorimeters before and during the fill and comparing the output
to a “standard” photodiode in a quiet area shielded from the beam.

10. The calorimeters were made of scintillating fibers with good light yield. Five fingers
of plastic scintillator, called “ front surface detectors” , were fitted in front of the
calorimeters and used for measuring muon losses, the vertical beam position, and
other diagnostics.

11. Fiber beam monitors could be located in the muon storage region to measure the
x (radial) and y (vertical) beam profile. The coherent betatron oscillations of the
muons as well as the stored protons were observed for the first time using these
instruments. The lifetime of the beam was reduced to half its natural value when the
fiber monitors were used so they were withdrawn for the (g − 2) measurements.

12. The radial field was measured with a Hall probe in the centre of the muon storage
region at several locations around the ring. The average radial field for most of the
run was 10–20 ppm.

13. The transverse cross-section of the muon storage region was circular, which greatly
reduced the need to measure the higher order multipoles of the magnetic field.

8.1. Neutron background

If protons are injected into the ring (as in the first CERN storage ring) the late
background due to fast neutrons is rather serious [105]. With pion injection, used in the
second muon storage ring, the situation was much improved but the background in the
detectors at early times was still uncomfortably high. Considerable research was done on
this at Brookhaven and it now appears that the main source is the pions which leave the ring
and hit a detector on the first turn. They interact inside the detector producing fast neutrons,
which have a mean free path of a few centimeters and are trapped inside the calorimeter.
They gradually diffuse out of the calorimeter with a characteristic time of order 30 µs. But
at any moment a neutron can be captured, the (n, γ ) reaction giving a pulse of light. The
overlapping of many soft gammas soon after injection gives an intense, quasi-continuous
flash of light, decaying roughly as 1/tη with η ∼ 1. At later times the individual gamma
pulses can be seen. This phenomenon, referred to for convenience as “ the flash” , can lead
to paralysis and gain changes in the photomultipliers, interfering with the muon precession
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data. Neutron gas circulating in the room is another factor but is probably less important
than the neutrons which bounce around inside the detector itself.

8.2. Muon injection

It was realized that increasing the number of injected pions would increase the flash to
unacceptable levels. The solution was to let the pions decay to muons outside the storage
ring in a long focusing channel. The muons of slightly lower momentum than the pions
could then be separated and injected into the ring. To put the muons onto permanently
stored orbits requires an outward kick of order 10 mR after the particles have made about
one quarter of a turn; so this is an additional complication. The kicker magnet must be
pulsed with a field that ideally drops to zero before the particles come around for the
second turn (150 ns), but it can contain no iron or ferrite, which would change the carefully
shimmed field of the main magnet. Current sheets inside and outside the orbit were used
to produce the desired pulsed field. Further details of the fast kicker are given in [106].

Direct pion injection is simpler, but not very efficient. Only about 10% of the pions
decay when they are crossing the muon storage region and the yield of stored muons is
only about 50 per million pions. In an external channel about 70% of the pions decay
and the muons of slightly lower momentum can be trapped in the channel and matched
more efficiently to the phase space of the system. This results in a factor 7 increase in the
number of muons stored per pion. The useful muons are separated by momentum analysis
before injection. Nevertheless about 1% of the injected particles are pions, so the flash is
not eliminated completely. Overall, one gets a major increase in muon intensity and a large
reduction in the background.

Injection into the successive muon storage rings can be seen to have followed a logical
progression. Proton injection onto a target in the ring is technically simple, as the high
momentum beam is not appreciably deflected by the magnet; but the background is huge.
Pion injection, used next, requires an inflector to cancel the main field along the track of
the incoming beam, so is more difficult; the background is much less, but still serious. The
next logical step is to let the pions decay outside the storage ring; an inflector is again
needed and in addition the muons have to be kicked onto the correct orbit after one quarter
of a turn. More challenging technology, but this is the only way to have a low background
with a large number of stored particles.

8.3. Kicker field and eddy currents

Eddy currents, excited in the vacuum chamber and the kicker electrodes by the fast
magnetic pulse, could interfere with the measurement of (g − 2) precession at later times.
It was important to minimize them in the design and measure them in practice. Ideally the
residual eddy currents should contribute less than 0.1 ppm to the average field 20 µs after
injection, when the measurements would start. Taking into account the total length of the
kicker (3 × 1.7 m) compared to the ring circumference of 45 m, this corresponded to a
13 mG residual field in the kicker.

The OPERA 2-d transient analysis software package [107] was used to calculate the
magnetic field distribution during the kicker pulse. The material of the kicker plates, their
thickness and geometry were adjusted to minimize the eddy currents. With a pulse width
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of 400 ns at the base, eddy currents in the top and bottom walls of the vacuum chamber
reduced the pulsed field by about 20% and changed its shape. Surprisingly, the residual
eddy currents were mainly in the kicker conductors themselves, rather than the walls of the
vacuum chamber.

The time dependent magnetic field in the kicker was measured using the Faraday
effect in a TGG crystal2 placed between the kicker plates. The beam from an argon laser
(λ = 514.5 nm) was passed through this crystal, located between almost crossed polarizers.
Rotation of the plane of polarization then changed the light intensity and allowed the
magnetic field to be measured. The advantage of this method is that there were no metallic
parts which could change the field or carry extra eddy currents. The technique has a
large dynamic range and fast response time, limited only by the rise time of the detection
electronics. Further details are given in [106].

Aluminum, copper and titanium were considered for the kicker electrodes. Opposite
eddy currents are excited by the rising and falling edges of the symmetric pulse of magnetic
field, and should cancel exactly, except for the decay during the interval between the two
transients. The ideal material to minimize the remaining eddy currents would therefore be
a superconductor with infinite L/R time constant, in which case the cancellation would be
exact. The inductance L is fixed by the geometry of the electrodes, vacuum chamber and
the magnetic field requirements, leaving the resistance R as the only parameter that could
be varied. A further constraint is that the decay electrons must pass through the kicker
plates on their way to the detectors.

For the same electrode thickness copper has the least resistance, followed by aluminum
and then titanium. The best metal for withstanding high voltages is titanium so it was
considered first. Unfortunately, with titanium plates, 0.5 mm thick, the residual field was
high and inhomogeneous, ∼100 mG at 20 µs, and did not drop below 13 mG until 45 µs.
Copper was considered next because of its lowest resistivity, but the 0.5 mm thick plates
were found by Monte Carlo simulation to degrade the decay electrons to an unacceptable
level. Fortunately with aluminum plates, 0.75 mm thick, the eddy currents were less
than with titanium and dropped rapidly. They were also found to give acceptable energy
resolution for the decay electrons.

Using the measured current as input, the OPERA calculation agreed with the magnetic
field measured by the Faraday effect, Fig. 26, both in field shape and absolute amplitude,
to better than 10%. The residual magnetic field was measured with the same system, using
AC coupling to the oscilloscope with increased gain. The result, reproduced in Fig. 27, was
a falling exponential with time constant about 20 µs, which contributed less than 0.1 ppm
to the mean magnetic field during the measurement period.

8.4. Circular storage aperture

To calculate the muon anomalous moment one must know the field 〈B〉, averaged over
the muons which contribute to the (g − 2) precession data. Finding this to a fraction of a

2 A TGG crystal is an artificially grown crystal with a big Verdet constant, i.e. for the same magnetic field one
gets large rotation without compromising the laser light quality. The crystal used in the tests was provided by
Optics For Research, Box 82, Caldwell, NJ 07006.
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Fig. 26. The pulsed magnetic field produced by the muon kicker measured by the Faraday effect. The muons
injected at peak field return 150 ns later when the field is close to zero. The kicker was fired at 95 kV, producing
4500 A in the kicker plates.
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Fig. 27. The residual magnetic field produced by eddy currents, measured by the Faraday effect. The kicker was
triggered at 95 kV, producing 4500 A in the kicker plates. The horizontal lines at ±13 mG show the range of
±0.1 ppm in 〈B〉. 20 µs after injection the residual field is below this limit. The filled circles correspond to OPERA
calculations using the measured current pulse as input.
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part per million requires special precautions. Even when averaged over azimuth, the field
is unlikely to be uniform to this accuracy. So one needs to know the distribution of muons
across the aperture.

Using cylindrical coordinates, tied to the centre of the storage aperture, let φ be the
azimuth angle around the ring, z the height above the median plane and x the radius relative
to the centre of the aperture. The magnetic field B satisfies the Laplace equation

∂2 B

∂x2
+ ∂2 B

∂z2
+ 1

x + r0

∂B

∂x
+ 1

(x + r0)2

∂2 B

∂φ2
= 0. (73)

Averaging over azimuth the field seen by a muon circulating round the ring at position
(x, z) in the aperture is

B̄(x, z) = 1

2π

∫ 2π

0
B(x, z, φ) dφ (74)

and B̄(x, z) satisfies (73) without the last term, which cancels in integrating round the ring.
Because the curvature of the ring is small it turns out that the third term in (73) is less than
1% of the first two terms, so to a good approximation the Cartesian form of the Laplace
equation in two dimensions applies:

∂2 B̄

∂x2 + ∂2 B̄

∂z2 = 0. (75)

It is well known that the field can then be expressed as a series of multipoles, which each
satisfy (75). These multipoles are most easily represented by changing to new coordinates
(r, θ) in the plane of the aperture, with origin at the centre of the aperture, such that
x = r cos θ and z = r sin θ . Then

B̄ =
∑

n

rn[cn cos nθ + sn sin nθ ], (76)

cn and sn being the multipole coefficients whose values can represent any arbitrary
distribution of B̄ in the aperture plane. The overall average field is B̄ = c0. If the other
coefficients are all zero, the field is uniform and no problems arise. How large can they
be before giving an appreciable error, and how does one calculate the contribution of each
multipole component to B̄?

Let the number of muons at point (r, θ) in the aperture be M(r, θ), the total number
being N = ∫ ∫

M(r, θ)r dr dθ . Then the average field contributed by the nth cosine
multipole is

B̄n = 1

N

∫ ∫
cnrn M(r, θ) cos(nθ)r dr dθ = cn In (77)

where

In = 1

N

∫ ∫
rn M(r, θ) cos(nθ)r dr dθ. (78)
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Table 4
Allowable magnetic multipoles: field at the edge of the aperture in ppm for 0.1 ppm effect on B̄

n Rectangular Square Circular

2 1.12 – 2.8
4 −1.56 0.80 −50
6 −2.00 – 286
8 5.40 0.92 −1014

10 2.06 – 2768
12 25.0 0.62 6446

In may be called the nth moment of the muon distribution; it has no quantities associated
with the magnetic field. Including all multipoles of the field, the overall average field
will be

B̄ =
∑

n

(cn In + sn Jn) (79)

in which the skew moments of the muon distribution are

Jn = 1

N

∫ ∫
rn M(r, θ) sin(nθ)r dr dθ. (80)

As this is a complete specification of the average field there can be no cross-terms. For
calculating the average field the nth moment In only interacts with the nth multipole
coefficient cn . This result greatly simplifies the task of specifying the magnetic field.

Assuming that the muons populate the available phase space uniformly one can
calculate the moments In and find the corresponding field multipoles which would change
B̄ by say 0.1 ppm. The results are given in Table 4 for various storage ring cross-sections:
a rectangular aperture 10×8 cm2, an aperture 9.14 cm2, and a circular aperture of diameter
11 cm. All three have the same acceptance. The permissible multipole is expressed as the
corresponding field at the edge of the aperture in ppm.

One sees that the aperture of the storage ring imposes its shape on the muon distribution.
With a rectangular aperture, there are particles near the corners, so the moments with
n = 4, 6, 8 have appreciable values and the corresponding multipoles must be small. A
square aperture is even more sensitive to the higher multipoles 8, 12 etc. With a circular
aperture, however, the smoothness of the boundary means that the higher cosine terms in
the muon distribution are small, and one can tolerate much larger multipoles in the field.
Therefore circular limiting stops were installed in the storage region to define the muon
population.

8.5. Electrostatic quadrupoles

In the CERN experiment the quadrupole electrodes occupied 72% of the total
circumference. There was a gap at the location of the inflector magnet, which cancels
the magnetic field for the incoming beam and another gap on the opposite side of the
ring to preserve the lattice symmetry. The Brookhaven lattice, shown in Fig. 28, had four
quadrupole regions. Muon injection requires a kicker magnet which kicks the beam onto
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Fig. 28. The muon g − 2 ring lattice indicating the four quadrupole regions, the kicker region and the inflector
location. The muon storage region is a torus of radius R0 = 7112 mm with circular cross-section of diameter
90 mm. The inner ring of 24 detectors are shown as black squares.

a stable trajectory [106]. The kicker magnet must be about 90◦ from the inflector magnet.
Therefore space must be left for both the inflector and kicker magnets with two other gaps
at 180◦ and 270◦ to preserve the lattice symmetry. The electrodes occupy only 43% of the
total circumference for the BNL lattice. The electric field gradient must be 1.7 times greater
than the CERN design for the same average field index. However, the higher symmetry has
two beneficial results: the beta functions are much more uniform around the azimuth and
the orbit stability is better.

To apply a field gradient 1.7 times greater than that used in the CERN ring was very
demanding. The main difficulty is the combination of the electric and magnetic fields which
creates large regions where low energy electrons can be trapped (as in Penning traps).
These trapped electrons undergo oscillations [108] ionizing the residual gas and creating
more trapped electrons. This cumulative action leads to a gas discharge and high voltage
breakdown. In CERN the problem was solved by turning off the voltage on the plates after
800 µs before the sparks occurred if the vacuum pressure was more than 10−6 Torr. With
the higher fields needed at Brookhaven the vacuum would have to have been better than
10−7 Torr, implying expensive equipment and long pumping times.

The problem was solved by studying the motion of the trapped electrons in greater
detail. The electrons oscillate vertically and drift along the length of the quadrupole plates
in the direction × . At the end of the plates the electric field is such that the trapped
electrons turn around and return to the quadrupole region. But this can be avoided by
correctly designing the geometry of the high voltage connections at the end of the plates.
The connections are arranged so that the quadrupole field is rotated by ∼45◦, breaking the
symmetry which is responsible for electron trapping. When the electrons reach this region
they are mostly driven away from the quadrupole plates instead of returning back. They
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drift along the leads and eventually reach the high voltage feed-through region, where the
magnetic field is low, and they are lost on the walls of the vacuum chamber. Once the
electron trapping was quenched, high DC voltages could be applied to the plates without
sparking.

The vertical motion of the electrons trapped inside the quadrupoles is simple-harmonic
and the frequency of oscillation is independent of amplitude; all the trapped electrons
oscillate at the same frequency. This oscillation caused image charges in the top and bottom
quadrupole plates which were sensed by capacitively coupling the plates to a spectrum
analyzer. One expects that on average the induced charge should be zero because there
should be equal number of charges moving upwards and downwards. But due to statistical
fluctuations the cancellation is not exact and there is a small residual signal which showed
up as a resonance at the vertical oscillation frequency. Plotting the resonance frequency
versus the applied high voltage showed that the electric field followed the correct functional
form even with high applied voltages [108]. That means that the trapped charge inside the
quadrupole region did not change the quality of the electric field at any relevant level.

Sensitive NMR probes were used to observe any magnetic field that might be generated
by the circulating trapped charges. The high voltage on the quadrupole plates was turned
on and off with a ∼100 ms period. The change recorded by the NMR probes was less
than 0.01 ppm. The new quadrupole design gave reliable operation at both muon polarities
at pressures below 10−6 Torr, the negative being the more demanding due to the larger
trapping regions.

8.5.1. Electrode design
The equipotential lines for a quadrupole potential lie on hyperbolae. Therefore, the

electrodes should ideally have a hyperbolic shape. In a real design, however, the limited
extent of the electrodes and the vacuum chamber walls at ground potential produce higher
order multipoles. The Brookhaven electrode design is shown in Fig. 29. Flat electrodes
have higher normal multipoles b6, b10, but the width of the electrode can be adjusted so
that b6 is zero. Then the field due to the b10 term is ≈1.9% of the main electric field at the
edge of the aperture. For the same applied voltage the quadrupole component for the flat
plate geometry is ∼4% higher.

The flat plate design, Fig. 29, was adopted as these electrodes would be easier to
fabricate and align than hyperbolic electrodes, which would be curved in two directions.
The effects of the vacuum chamber walls were minimized by the diagonal rails which have
the correct fourfold symmetry. The NMR trolley (Section 8.8) uses these rails to travel
around the ring.

8.6. Superconducting inflector

As in the second muon storage ring, the injected particles (pions or muons) must be
brought to a point just outside the storage region where they must be traveling more or less
tangentially to the orbit. This requires the incoming track to be shielded from the magnetic
field by an “ inflector” . In CERN the inflector was a pulsed coaxial line with solid metal
walls, so leakage of magnetic field into the muon storage region was negligible. In the
new experiment the magnet was wider and it was desired to inject the particles from each



58 F.J.M. Farley, Y.K. Semertzidis / Progress in Particle and Nuclear Physics 52 (2004) 1–83

Fig. 29. A photograph of a vacuum chamber housing the quadrupole plates; the ring centre is on the left. The
distance between quadrupole plates is 10 cm. The NMR trolley rides on the bottom left and the top right rails
when measuring the magnetic field. The other two rails are to maintain the symmetry of the quadrupoles. The
ruler units are inches.

circulating bunch in the AGS, once every 33 ms. This implied a longer inflector and to
pulse it so rapidly would be very difficult. The problem was solved by using an ingenious
arrangement of superconductors [109] which produced a uniform field of 1.5 T along the
beam (to cancel the field of the magnet), but zero field in the neighboring muon storage
region. The principle is as follows.

A cylinder with cosine theta winding produces a uniform field inside and a pure dipole
field outside. If a larger cylinder is placed outside, with another cosine winding carrying
an equal and opposite current, the exterior fields will cancel everywhere, but there will be
a net uniform field inside the smaller cylinder Fig. 30(a). All the fringing field from the
inner cylinder is confined inside the outer. One can then add a uniform current sheet along
the line AB to satisfy the boundary conditions so the field to the right is unchanged but
the field to the left is zero. Similarly one can add a non-uniform current sheet along the
curved field line BCDA. Removing unwanted parts, one is left with Fig. 30(b). This has
three current sheets which can be made of superconductor carrying a steady current. There
is a uniform field to the right of the line AB where the injected particles must pass, and no
stray field in the region to the left of the line AB where the muons will be stored.

If this inflector was infinitely long it would probably work perfectly. It must end where
the muons come out into the magnet, and at the end there is inevitably some leakage of
the inside field into the muon storage region. This was eliminated by adding a vertical
superconducting sheet between the inflector and the storage region with a special switching
on procedure. One must first turn on the main magnet; then cool the superconducting sheet,
so that it freezes the existing uniform field pattern; then turn on the current in the inflector
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Fig. 30. Superconducting inflector concept: solid lines are current sheets, dotted lines are lines of magnetic field.
Current flows into and out of the paper. a: concentric cylinders with equal and opposite cosine-theta current
distributions. The field inside the inner cylinder is uniform, but beyond the outer cylinder the fields cancel. b: the
same with current sheets added along field lines ABCD to satisfy the boundary conditions and the rest removed.
The uniform field to the right of current sheet AB cancels the field of the main magnet along the track of the
incoming muons. But the field to the left of AB, where the muons will be stored, is unchanged.

Fig. 31. A cross-section of the inflector showing superconducting windings embedded in epoxy matrix. The
injected muons travel in the black area. The muon storage area is on the left.

to cancel the field along the incoming muon track. The superconducting sheet will then
prevent any stray field from the inflector passing across it, into the storage region. Once
this superconducting sheet had been added (for the 2000 data-taking run), there was no
detectable change in the storage region whether the inflector was on or off! For earlier runs
the shield was imperfect and local Field gradients made NMR measurements close to the
inflector difficult.

A cross-section of the inflector is shown in Fig. 31. Further details of the construction
and performance are given in [110].
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Fig. 32. The cross-section of the magnet.

8.7. Magnet with superconducting coils, shimming technique

The magnet for the BNL muon storage ring [111, 112] is a single iron magnet 14 m in
diameter, with superconducting coils, constituting the largest diameter superconducting
magnet in the world to date and weighing more than 700 tons. The advantages of a
superconducting magnet were the large L/R time constant of the coils, with L = 0.4 H,
and R = 11.5 µ�, which meant small ripple currents, thermal stability once cold, low
voltage power supply requirement. Since the diameter of the coils was large, they had to be
wound at BNL and an elaborate coil support system was designed to ensure coil stability
during manipulation. At full field the critical temperature of the outer coil was 6.0 K and
the magnet was typically operated at 5.0 K. The stored energy at the full field of 1.5 T was
6 MJ. The quench protection system, designed to protect the coils in the event of a quench,
opened the connection to the power supply, so the current flowed through a dump resistor
of about 8.5 m�. The magnet never quenched by itself but it did so several times owing to
operator mistakes or power surge.

The cross-section of the magnet, Fig. 32, shows the iron yoke, the three superconducting
coils, the pole pieces, and the muon storage region, edge shims (to adjust the sextupole
terms) and the wedge shims (to adjust the quadrupole and octupole terms). The pole pieces
are made of high quality ultralow-carbon steel and the air gap between the pole pieces
and the iron yoke isolates the storage region from the imperfections of the yoke. To further
improve the field uniformity, surface coils were located on the pole pieces. After integrating
in azimuth the final field uniformity in the storage region was ∼1 ppm.
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The (g − 2) magnet was placed in the old 8 ft bubble chamber building at BNL, where
only a heating system is installed without air conditioning. The day/night temperature
change of the room was 1–2 ◦C, but ten times smaller for the magnet itself, owing to
its large heat capacity. This temperature change caused a change in the dipole field of
35 ppm/◦C while the rate of temperature change caused a change of 25 ppm/◦C/h in the
normal quadrupole component and 6 ppm/◦C/h in the skew quadrupole component of the
field. After the magnet was thermally insulated the temperature stability improved by about
an order of magnitude with a corresponding gain in the field stability.

8.8. Field measurement by nuclear magnetic resonance (NMR)

The magnetic field was measured by finding the precession frequency of protons
in water using the pulsed NMR method [113]. In a magnetic field there is a net proton
magnetization along the magnetic field. A pulse is applied to rotate by 90◦ and
then precesses freely around at the frequency ωp . This precession induces a signal in a
pickup coil wound around the sample. Beating the signal with a fixed frequency (62 MHz)
gives a lower frequency oscillation which can be measured by standard techniques.

The magnetic field in the muon storage region was measured every two to three days
inside the vacuum chamber with an NMR trolley carrying 17 NMR probes. Between trolley
runs the field was monitored continuously by 360 fixed NMR probes located on top and
bottom of the vacuum chambers as illustrated in Fig. 33. The trolley was parked in a
garage under vacuum and its operation was performed by remote controls. About 5000
measurements were taken around the circumference per trolley run. Inside the trolley the
air pressure is kept at 1 atm and there were pressure sensors as well as temperature sensors
that monitor these important parameters as a function of time. The absolute value of the
magnetic field was obtained by comparing the trolley probes to a standard probe [113] with
a carefully constructed spherical water sample that fills a 1 cm3 volume. The diamagnetic
shielding factor σ is given by

Bp = (1 − σ)Bspherical water (81)

and has been measured in separate experiments [98] with input from theory [114, 115]
yielding σ = 25.790(14)×10−6 at 34.7 ◦C. The temperature dependence of σ is measured
to be 10.36(30)× 10−9/◦C [116].

Table 5
Systematic uncertainties in ωp [117]

Source of error Size (ppm)

Absolute calibration of standard probe 0.05
Calibration of trolley probe 0.15
Trolley measurements of B-field 0.10
Interpolation with fixed probes 0.10
Uncertainty from muon distribution 0.03
Others 0.10

Total 0.24
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Fig. 33. The trolley carrying NMR probes traveling round the ring inside the vacuum. The locations of the 17
trolley probes are shown by black circles B, and for example the locations of fixed probes outside the vacuum
chamber at A. The lower graphs show a typical free induction decay signal after beating with the fixed frequency
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The field, averaged over the muon distribution and weighted according to the number
of decay electrons recorded at each moment of the run, was obtained by two largely
independent analyses. A map of the magnetic field integrated over azimuth for one trolley
runout out of 22 taken in 2000 is shown in Fig. 34; the central field was 1.451 274 T. The
azimuthal variation of the field is also shown in Fig. 34. The final average proton resonance
frequency was ωp/(2π) = 61 791 595 (15) Hz for the 2000 run. The systematic errors in
ωp are given in Table 5. The total systematic uncertainty in ωp was 0.24 ppm [117].
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8.9. Beam dynamics

8.9.1. Radial distribution of stored muons
The injected muon beam had a width of order 30 ns (standard deviation) and it

debunched, due to momentum dispersion, with a lifetime of ≈25 µs. The time spectrum
of the positrons detected by a single detector shortly after injection is shown in Fig. 35
where the g − 2 oscillation along with the slowly decaying fast rotation structure is seen.
The rotation frequency of the stored muons depends on their radius. Therefore their radial
distribution can be found by Fourier analysis of the counting record. The momentum
acceptance of the ring was narrow (0.6% total) and a special Fourier analysis technique
was required to avoid introducing artificial effects into the width of the Fourier analyzed
data. The muon radial distribution so obtained is shown in Fig. 36.

First the time distribution is divided by the ideal five parameter function which removes
the muon lifetime and (g−2) precession. The remaining structure in the data is the ∼149 ns
revolution frequency (“ fast rotation” ). For a specific detector the signal in the time domain
starts abruptly at t = t0 and has a maximum at this time. At any other time the phases are
mixed resulting in a lower amplitude signal. The true frequency distribution is obtained by
using only the cosine term of the Fourier transform, obtained by multiplying the data by
the cosine of each frequency and integrating from t = t0 to infinity [118]. If the data are not
available from the beginning then determining the correct t0 is crucial to avoid distorting
the frequency distribution. Even then the tails of the distribution will be distorted following
a parabolic function. Outside the 9 cm diameter muon storage region, the tails are fitted to
a parabola which is subtracted from the signal in the entire region. Analytic calculations,
verified by Monte Carlo simulations, showed that this technique recovers the correct radial
distribution of the muons to good accuracy [118].
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Fig. 35. The bunched structure of the muon beam, clearly evident in the inset, showing the 8.5–13 µs time range,
is superimposed on the g − 2 oscillation at early times. The fast structure decays with a lifetime of ≈25 µs with
only the g − 2 oscillation remaining at later times.

For fitting the (g − 2) frequency the fast rotation structure was eliminated by
randomizing the time of the injected muon beam with the average fast rotation period of
approximately 149.2 ns, the result is shown in Fig. 37. After the randomization, the Fourier
spectrum showed no structure at the fast rotation frequency.

Fitting the data without the randomization showed large phase pulling in the fitted
(g − 2) frequency, but after randomization this went away. The sensitivity to the beam
rotation period used for randomization was studied and found to be very small but was
included in the systematic error table.

8.9.2. Coherent betatron oscillations
The storage ring lattice is shown in Fig. 28. The muon beam was injected through the

inflector (Section 8.6) [109], whose acceptance was smaller than that of the ring itself. As
a result the phase space of the ring was not filled, and there were betatron oscillations of
the beam as a whole, called coherent betatron oscillations (CBO). Those oscillations were
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Fig. 36. The muon radial distribution obtained by Fourier analyzing the fast rotation structure of Fig. 35. The
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either side are the edges of the storage region at r0 ± 4.5 cm.

both horizontal and vertical and the motion is described by

x = xe + x0 cos(ωx t + θx), (82)

y = y0 cos(ωyt + θy), (83)

Here xe is the equilibrium radius measured from the central radius of the aperture,
r0 = 7.112 m, and x0 (y0) is the horizontal (vertical) CBO amplitude. ωx ≡ 2π fx ,
ωy ≡ 2π fy , with fx ( fy) the horizontal (vertical) CBO frequencies given by

fx = fc(1 − √
1 − n), (84)

and

fy = fc
√

n, (85)

where the orbit frequency fc = 1/(149.2 ns) = 6.7 MHz, and n is the field focusing index.
The horizontal CBO frequency was the result of the beat between the orbit frequency
fc = 6.7 MHz and the horizontal betatron frequency of fc

√
1 − n. Small corrections

were applied for the discrete nature of the quadrupole lattice. Since the acceptance of the
detectors depended on the radial position of the beam, the number of the detected electrons
was modulated at frequency fx . The acceptance of detectors to the inward and outward
going electrons also depended on the radial position of the beam so the (g − 2) asymmetry
and the phase were also modulated at fx . Since the beat frequency fx was close to twice
the (g − 2) frequency it was important to study the CBO and its effects very carefully (see
Section 8.10).
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Fig. 37. The detected positron time spectrum of Fig. 35 after randomizing the muon injection time with a period
of 149.2 ns; the fast rotation structure seen in Fig. 35 is eliminated.

8.9.3. Field focusing index
Fig. 38 shows the vertical νy = √

n versus the horizontal νx = √
1 − n tune, along

with the most important beam dynamics resonances of the weak focusing muon storage
ring. The acceptance of a weak focusing ring has a rather wide maximum at n = 0.137.
The n-value is proportional to the voltage applied to the quadrupole plates, Eq. (63). Due
to the presence of the magnetic field, and for reasonable residual pressures in the vacuum
chamber of about 10−7 Torr, it was difficult to work higher than n = 0.137 [108]. This
was due to the large number of low energy trapped electrons circulating in the quadrupole
region, which could accumulate and give rise to a discharge (see Section 8.5). A reasonable
value of n was around 0.136–0.137, centred between two relatively strong beam dynamics
resonances at n = 0.126 and n = 0.148, shown in Fig. 38. The effect of the low energy
trapped electrons was studied and shown to contribute less than 0.01 ppm to the magnetic
field. Their effect on the quadrupole electric field was negligible [108]. From Eq. (84)
the horizontal CBO frequency corresponds to fx � 466 kHz which is close to twice the
(g − 2) frequency of ≈229.1 kHz. The combination of CBO with the (g − 2) precession
can produce a slow modulation in the counting rate on a timescale of order 100 µs. This
effect is small, but shows up if the data has very high statistics.
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8.10. Fitting the counting data to find ωa

8.10.1. Signal overlap
The decay electrons have for the most part less momentum than the stored muons and

under the influence of the magnetic field they spiral inwards towards the electromagnetic
calorimeters [119] which give a pulse height proportional to the electron energy. The
calorimeter is connected through four light guides to four photomultipliers (PMT) to reduce
the counting rate per PMT. The outputs of the four PMT signals are combined into a single
one which is then fed to a custom made 400 MHz waveform digitizer (WFD). The WFD
consists of two WFD each of 200 MHz, interleaved so that in effect they make a single
WFD with 2.5 ns channels.

Fig. 39 shows a typical digitized signal; one sees that the WFD provides information
before and after the pulse over a total period of about 80 ns. To determine the time and
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Fig. 39. The waveform digitizer record of a single pulse from the electron calorimeters. The channels are 2.5 ns
wide.
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Fig. 40. The waveform digitizer record with two signals 15 ns apart. These can be fitted separately, but signals
less than 5.8 ns apart are treated as one.

amplitude of the signal, each pulse is fitted with a standard shape (or template). The
template was formed by averaging about 104 pulses recorded at late times, well after
the muons were injected when there was no problem with overlap. In Fig. 40 two decay
electrons are present. The first one triggered the WFD and the second one happened to
arrive before the end of the digitizing period. From studies it was shown that as long as the
pulses were separated by at least 5.8 ns the pulse fitting algorithm could distinguish them
and recover the energy and arrival time of both. The pulses that were separated by less than
5.8 ns were treated as one, and pulses of amplitude less than 0.4 GeV were discarded.
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Fig. 41. The energy spectrum of the detected positrons with energy greater that 1 GeV at all times (thick line) and
at only late times (thin line) when the rates are low. The dashed line shows the overlap-subtracted spectrum at
early times. The inset shows the average energy of positrons before (filled circles) and after (open circles) overlap
subtraction for E > 2 GeV (2000 data).

Due to the high counting rates, two positron pulses could overlap about 0.5% of the
time. These pulses would be recorded with the wrong energy and wrong arrival time. As
the overlaps occurred mainly at early times when the rates were high, this could cause a
change in recorded (g − 2) phase at early times leading to a shift in the fitted frequency.
The following procedure was used to subtract the overlapping signals from the record.

As mentioned above, once the WFD was triggered by a signal above the energy
threshold of approximately 1 GeV it was instructed to keep in its memory a digitized
period of about 80 ns, more than needed to describe the trigger signal. It was thus possible
for other signals above or below the energy threshold to be present during this digitized
period depending on the counting rates, with a probability matching that of the unresolved
overlap.

The extra recorded pulses were used to reconstruct, on a statistical basis, the time and
energy spectrum of the overlap pulses which were then subtracted from the data. Given
a trigger pulse, the probability of having a pulse underneath it is very close to that of a
pulse 10 ns away to the right. The combination of the trigger pulse S1, with pulses S2 in a
window offset to the right by ∼10 ns, in a time window equal to the resolution time, gives
a very good account of the overlap, both in amplitude (number of random coincidences)
and phase (timing of the overlapping pulses).

Two low energy pulses (singles, S1, S2) below the offline energy threshold (2.0 GeV)
can combine to give one high energy pulse (double, D), above this threshold. This case
constitutes a gain of an overlapping particle into the regular time spectrum. It is also
possible that two single particles, both above the energy threshold, combine to make a
double. This constitutes a loss of one particle from the regular time spectrum. Therefore
the overlap spectrum is equal to P = D − (S1 + S2) where D is the doubles spectrum and
S1 and S2 are the singles.

Fig. 41 shows the electron energy spectrum [120] at early and late times and the energy
spectrum at early times after overlap subtraction. The inset figure shows the average
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(2000 data).

electron energy before and after overlap subtraction. One sees that the overlaps are removed
effectively. After overlap subtraction the average energy is essentially independent of time
as expected. All this was achieved without having to resort to any fudge factors multiplying
the reconstructed overlap spectrum. The only input parameter was the resolution time,
determined beforehand by independent studies.

Fig. 42 shows the time spectrum of the reconstructed overlapping signals and the fit
parameters. In this fit ωa was fixed to the value obtained in the final analysis. The lifetime
is equal to half the regular dilated muon lifetime as expected. The shift in ωa due to overlap
subtraction was 0.3 ppm and its systematic error due to uncertainties in the overlap phase
and complications arising due to the offline energy threshold of 0.4 GeV were estimated to
be 0.12 ppm [117].

8.10.2. Fitting the (g − 2) precession
In the year 2000, good statistics were accumulated leading to a 0.7 ppm result. Fig. 43

shows the total number of positrons detected with E > 2 GeV as a function of time. The
(g − 2) precession is now seen out to 850 µs. At early times the number of positrons
is of order 10 million per 149.2 ns bin. Therefore, very small effects are important and
noticeable in the fits by giving a poor χ2. The effects studied include:
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1. Slow varying effects as a function of time. They include detector gain changes, muon
losses, early to late pulse reconstruction differences and light flash.

2. Overlapping pulses (see above).
3. Coherent betatron oscillations.
4. Unwanted particles leaking from the AGS into the muon ring (called “fl ashlets” ).

The equation describing the ideal positron time spectrum is given by

N(t) = N0(E)e−γ τµ [1 + A(E) cos(ωt + φ(E))], (86)

where A(E) is the (g − 2) oscillation asymmetry and φ(E) the (g − 2) phase, both of
which depend on the energy threshold E ; for E = 2 GeV, A = 0.4.

After the data were fitted with Eq. (86), a Fourier analysis of the residuals gave Fig. 44.
The amplitudes of the various peaks, especially that for fCBO, were large relative to the
white noise present in the spectrum, implying that the CBO modulation was statistically
important. The two CBO sidebands were not of equal amplitude and in particular not equal
to 1

2 AAN, where AN is the amplitude at fCBO. This precludes the possibility that N0 was
the only CBO modulated parameter. To get a good fit to the data and to be sure of finding
the correct (g − 2) frequency, it was essential to include parameters describing the effect
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amplitude implying that the CBO modulation is important (2000 data).

of the CBO in the fit function. Various approaches to this problem were used by different
analyzers, but they came to a unanimous conclusion.

The overlapping pulses were mostly dealt with by subtracting the reconstructed overlap
as described above. In a separate study the overlap spectrum was fitted keeping the overlap
phase constant to a value obtained by fitting the reconstructed overlap (see above Fig. 42).

The flashlets were the result of intermittent perturbations in the AGS. They were largely
eliminated by installing a pulsed dipole magnet in the pion beam line, turned on after the
muons were injected into the ring. The data taken up to 1999 were checked for the flashlet
background by folding the time of the pulses modulo 2.975 µs, the AGS period. Starting
in 2000, once every 25 fills the electrostatic quadrupoles were not turned on, so no beam
was stored. Those fills were analyzed for background effects, the most important being the
flashlets; periods with problems were rejected.

Since the acceptance of the detectors depended on the position of the muon beam
relative to the detectors, the time and energy spectra of the detected positrons were
modulated with the CBO frequency. As a result, the g − 2 phase, asymmetry and the
normalization N0 were all modulated with the CBO frequency, and all became time
dependent. Since the CBO frequency was close to twice the g − 2 frequency [117], the
asymmetry and g−2 phase modulation were important effects that needed special attention.
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used to fit the positron time spectrum. The χ2 for the straight line fit is χ2 = 58.7/21, and the average
f = 229 073.98 ± 0.14 Hz. A sine wave fit (see the text) gives a good χ2 and a central f = 229 074.02 ± 0.14 Hz,
very close to the average (2000 data).

These effects generated a slow beat with an oscillation period of ≈130 µs. The CBO
modulation affected the energy spectrum of the detected positrons and hence their average
energy. However, it was difficult to distinguish it from other slow effects such as change
of gain, muon losses and signal overlap. In 2001, the data were taken at different n-values,
n = 0.142 and n = 0.122 corresponding to horizontal CBO frequencies of 491 kHz and
421 kHz; so the beating with the (g − 2) frequency of 229 kHz was more rapid and less of
a problem.

The pulling of the (g − 2) frequency by the CBO is illustrated in Fig. 45 in which
a straight line fit to f ≡ ω/2π versus detector gives f = 229 073.98 ± 0.14 Hz and
a χ2 = 58.7/21, indicating that there is a consistency problem. A fit of a sine wave
plus constant, f + P1 ∗ sin( 2π

24 × det.# + P2), to the same data gave a mean value of
f = 229 074.02 ± 0.14 Hz with a sine wave amplitude of (1.20 ± 0.20) Hz. When
the CBO modulation is included for the parameters N0(t), A(t) and φ(t), the χ2 for a
straight line fit of f versus detector, Fig. 46, is χ2 = 23.9 versus 21 expected, and the
average f = 229 073.92 ± 0.14 Hz. To be acceptable, every analysis had to give a (g − 2)
frequency that was the same for all detectors and independent of the start time of the fit.
Various methods of fitting the CBO modulation and other slow effects were used and are
described in references [117, 120]. All gave consistent results within the expected statistical
uncertainties due to the slightly different choice of data.

The pitch correction, Eq. (44), was 0.28 ppm, determined by simulating the stored
muons to find the average pitch angle. The electric field correction of 0.48 ppm, Eq. (67),
was calculated from the radial distribution of muons; see Fig. 36.
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Fig. 46. A straight line fit to ω/2π versus detector number when the ideal five parameter function including the
CBO modulations of N0(t), A(t), and φ(t), is used to fit the positron time spectrum. The χ2 for the straight line
fit is χ2 = 23.9 versus 21 expected, and the average f = 229 073.92 ± 0.14 Hz (2000 data).

8.10.3. Blind analysis
To avoid subconscious bias in the analysis, arising from the theoretical value or other

prejudice, the collaberation used separate teams to determine ωa and ωp for all reported
measurements. Each team had a secret frequency offset, which was unknown to the other.
The offsets were removed only after a firm value of each frequency had been assured, with
all corrections applied. They then calculated the ratioωa/ωp and found the value of (g−2).

8.11. Results and discussion

The results of all the CERN (g − 2) measurements and a series of runs with the
Brookhaven storage ring are shown together in Table 6. When the Brookhaven result
for the 1999 data was published, the hadronic light-by-light scattering contribution to a
was −85 (25) × 10−11, see Section 2.4, and the experiment disagreed with theory by
3.7±1.4 ppm (2.7 standard deviations), causing much fluttering in the dovecotes. Was this
a “harbinger of new physics” [18] and the first clear sign of supersymmetry? Or merely
a statistical fluctuation? There were many opinions. Taking the discrepancy seriously, the
theorists in Marseille (Knecht, Nyffeler, Perrottet and de Rafael) resolved to re-examine
the hadronic light-by-light diagrams using a new approach; and they found a positive
contribution [32] to a instead of the negative value favored by the experts. Vigorous
discussion ensued, but the positive value of Eq. (15) is now agreed, bringing the theory
closer to experiment.

The Brookhaven result for the data of year 2000 confirmed the previous µ+ value,
but with a higher accuracy, and the result for the 2001 data on µ− is slightly higher
but agrees within one standard deviation. The average combined value, given in Table 6,
is to be compared with the current theoretical number given in Table 3. The difference
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Table 6
Experimental results for a

CERN cyclotron 1961 [66] µ+ 0.001 145 (22)
CERN cyclotron 1962 [67] µ+ 0.001 165 (5)
First muon storage ring at CERN 1966 [76] µ− 0.001 165 (3)
First muon storage ring at CERN 1968 [77, 78] µ± 0.001 166 16 (31)
Second muon storage ring at CERN 1975–77 [92] µ± 0.001 165 923 (8) 7 ppm
BNL, 1998 data 2000 [122] µ+ 0.001 165 919 1 (59) 5 ppm
BNL, 1999 data 2001 [121] µ+ 0.001 165 920 2 (15) 1.3 ppm
BNL, 2000 data 2002 [118] µ+ 0.001 165 920 39 (84) 0.72 ppm
BNL, 2001 data 2004 [129] µ− 0.001 165 921 43 (83) 0.71 ppm

Combined weighted average [129] µ± 0.001 165 920 82 (55) 0.47 ppm

is (28 ± 9.6) × 10−10, (2.9 standard deviations). It will be recalled (see Section 2.3) that
the theoretical prediction is based on the cross section for hadron production in e+e−
collisions. Revised e+e− data, expected from Novosibirsk, may reduce the discrepancy.

The consistency of the three recent Brookhaven results, based on independent data, is
striking, and suggests that all operations were carried out correctly. We must ask whether
there is any element, common to all the experiments, which could be wrong. The muon
decay counts leading to ωa are clearly independent. The magnetic field for the 2000 and
2001 data was based on new surveys with the mapping trolley and the trolley probes were
recalibrated against the standard probe, so these errors are uncorrelated.

The standard probe itself was common to both runs, and was also used in the muonium
hyperfine measurement which gives the value of λ, Eq. (19), used in Eq. (28). Also
common to all experiments is the diamagnetic shielding for protons in water (25.6 ppm).
(The NMR probe for measuring the magnetic field uses protons in water, while the value
needed for the ratio λ corresponds to protons in vacuum.) The shielding correction taken
from Phillips et al. [98] is another common factor, but there is no reason to doubt this value.

Some confirmation comes indeed from the muonium measurements themselves [37].
The value of λ (quoted to 31 ppb) was obtained from resonance frequencies in two different
ways, only one of which involved the value of the magnetic field. The fact that they
agreed implies that the magnetic field (including the diamagnetic shielding correction)
was determined correctly.

Thus it is hard to explain the disagreement with theory on experimental grounds. We
must hope that further progress in understanding the hadronic corrections will resolve the
issue . . . or it will eventually be seen to be a consequence of some “new physics” .

9. Outlook for the future

No further runs with the present Brookhaven Storage Ring are currently programmed
but there are plans to upgrade the experiment in several important respects and thus obtain
more accurate data. Meanwhile the theory is being steadily refined, and further results
from the e+e−-colliding beams at Novosibirsk and Beijing can be expected to modify the
calculated value.
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Uniform field
Radial edges

<B> independent of radius (momentum)
Vertical focusing from magnet edges
Horizontal focusing from bends

Fig. 47. A storage ring with edge focusing. The field in the magnets is uniform and the edges are radial to the
centre of the ring. The mean field is independent of the orbit radius.

9.1. New ring structure

To improve the experiment further it would be desirable to increase the energy of the
stored muons. This would increase the lifetime so more(g − 2) cycles could be measured,
giving a proportional increase in accuracy for the same number of stored particles; see
Eq. (56). But this would mean abandoning electric focusing, which can only be used at
the magic energy of 3.1 GeV. In general, especially in strong focusing machines, magnetic
focusing is associated with a field that varies with particle momentum. But for a(g − 2)
measurement, the average magnetic field should be independent of orbit radius, as in the
Brookhaven and final CERN experiments, so the muon trajectory need not be located
precisely.

A new ring structure has been proposed [122] to satisfy these requirements using
alternating gradient focusing. The principle, illustrated inFig. 47, is to useseveral magnets
with uniform field, separated by straight sections. The magnets are wedge shaped, with the
edges inclined along lines which are radial to the centre of the ring. With four sectors, as
shown for example inFig. 47, this gives a quasi-square orbit with rounded corners. If the
track is scaled to a different size, the proportion of time spent inside the field is invariant;
so the average magnetic field is independent of the radius. On the other hand, the particles
cross the magnet edges at an angle, and this gives vertical focusing.

Using standard formulae [123] the horizontal and vertical tunes,Qh and Qv , can be
calculated as a function of the wedge angle. With only two sectors, the orbit is unstable in
the horizontal plane, but with three or more sectors there are many options. By changing
the wedge angle one can choose suitable combinations ofQh andQv . Thehighest average
field for a given amount of focusing is obtained with only three sectors.
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Calibration of the field cannot be done with standard NMR probes carried around
the ring, because they will not function in the large gradients at the magnet edges.
Instead one should observe the precession of polarized protons in flight, which would
automatically average the field over the orbit. If the protons have the same momentum
as the muons they must follow exactly the same track. Orbit diameters can be compared
to sub-millimeter accuracy by measuring the rotation frequency; see for example Fig. 36.
(The small correction for the lower proton velocity can be applied with negligible error.)

Horizontally polarized protons are routinely used in the Relativistic Heavy Ion Collider
at Brookhaven [124] and give an asymmetry in up/down scattering on carbon. In this case
they would precess at the proton (g−2) frequency, for example 126 MHz in a field of 4.5 T.
As the proton lives for ever and the field would be the same for all particles, the spins will
remain synchronized for over one million turns (8 ms). The frequency could rather easily
be measured to parts per billion.

The proton beam has a much smaller emittance than the muons, so it can be placed at
various radii, and the field (averaged in azimuth) can be mapped as a function of radius.
The proton orbit could also be moved vertically by slightly tilting the magnets to add a
radial magnetic field, and the protons could be injected with a range of vertical angles, to
check the field as a function of vertical betatron amplitude. Locating the protons in the field
is easier than locating the muons.

Calibrated in this way, the experiment would measure the ratio of muon to proton (g−2)
frequencies ωµa /ω

p
a . To calculate the anomalous moment aµ of the muon using Eq. (28)

one needs to convert the proton (g − 2) frequency to the corresponding proton precession
frequency at rest, that is one needs the ratio Q = ω

p
a /ω

p
s = (g p−2)/g p. The gyromagnetic

ratio of the proton is 2 ×2.792 847 39 (6) [125], known to 21 ppb, so the error in Q is only
7 ppb: the conversion is no problem.

A possible structure for 15 GeV muons uses three 4.5 T magnets with bend radius of
12 m separated by straight sections 4.3 m long. The vertical tune would be Qv = 0.4,
slightly higher than in the storage rings used at CERN and Brookhaven, and Qh = 1.025.
The average field would be ≈ 3.6 T and the accuracy for the same number of stored muons
would be ten times better than at present.

One of the straight sections would be used for the proton polarimeter. Another would
have a conventional ferrite kicker for injecting the particles. The residual field should drop
to low values after 10 µs but in any case it could be tracked with the polarized protons. As
the incoming particles would not have to pass through a magnet, there would be no need
for an inflector (Section 8.6).

The advantages of this new ring structure are as follows:

1. no electric quadrupoles;

2. no NMR trolley, which has to be calibrated, with corrections for the diamagnetism
of water, etc;

3. no superconducting inflector;

4. injection with a simple kicker;

5. higher muon energy, giving longer lifetime, more accuracy with lower counting rates,
less signal overlap and less problem with flash and detector transients;
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6. higher magnetic field giving more (g − 2) cycles per lifetime and more accuracy—
not possible with electric focusing as the electric field must be increased pro rata and
is limited by breakdown.

If a higher energy muon beam is available, a new experiment might be rather simple and
elegant. But as long as the theory is in doubt, the need for a more accurate measurement is
debatable. When the time is ripe, this could be the path to follow.

10. Summary and concluding remarks

Since 1961 the (g − 2) value of the muon has been a restraint on the fantasy of
theorists, a reference point against which new speculations could be compared, a landmark,
a lighthouse in troubled waters; and many brilliant ideas have foundered on these rocks.
The first experiments established the muon as a “heavy electron” . The first muon storage
ring revealed the effect of light-by-light scattering by electron loops [77, 81]; see Eq. (58).
The second muon storage ring showed that virtual hadrons also contribute.

The Brookhaven experiment has stimulated the theorists to further effort, notably in the
case of the hadronic light-by-light scattering diagrams [32]; see Eq. (15). On the other hand
advances in the theory pushed the experimenters to find successively better ways of testing
the predictions. At the time of writing the correspondence of theory with experiment is still
open to doubt.

A striking feature of the results tabulated in Table 6 is that the new measurements
have always fallen inside the error limits of the old. So, irrespective of the theory, the
older measurements were consistently proved correct by later work! The task of the
experimentalist is to create new equipment, to understand it in every detail, and to get the
right result. It seems that the many teams involved in this long effort did an excellent job.

Parts of this article are based on the review by Farley and Picasso [51] and we thank the
authors and publishers for permission to reproduce.
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[40] F.J.M. Farley, in: M. Levy (Ed.), Cargèse Lectures in Physics, Gordon and Breach 2, New York,

1968, p. 55.
F.J.M. Farley, Contemp. Phys. 16 (1975) 413.

[41] A. Sommerfeld, RC Convegno di Fisica Nucleare, Atti Reale Accad. Italia IX (1931) 137.
[42] H. Mendlowitz, K.M. Case, Phys. Rev. 97 (1955) 33.

M. Carrassi, Nuovo Cimento 7 (1958) 524.
[43] V. Bargmann, L. Michel, V.L. Telegdi, Phys. Rev. Lett. 2 (1959) 435.
[44] D.T. Wilkinson, H.R. Crane, Phys. Rev. 130 (1963) 852.
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