Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
reading:the_47_years_of_muon_g-2 [2020/09/18 04:40] – Ce Zhang | reading:the_47_years_of_muon_g-2 [2020/09/18 08:58] (current) – Ce Zhang | ||
---|---|---|---|
Line 1: | Line 1: | ||
- | ====The 47 years of muon g-2==== | + | =====The 47 years of muon g-2===== |
F.J.M. Farley, Y.K. Semertzidis | F.J.M. Farley, Y.K. Semertzidis | ||
Line 5: | Line 5: | ||
最近一次在BNL的 third muon storage ring 实验。最后比较了实验和理论的结果。 | 最近一次在BNL的 third muon storage ring 实验。最后比较了实验和理论的结果。 | ||
- | ===1. Introduction==== | + | ====1. Introduction===== |
+ | |||
+ | ===1.1 g factor=== | ||
旋磁比 $g$ 是一个系统的磁矩(磁动量) (magnetic momentum) 和其角动量 (angular momentum) 与拉莫因子 ($e/2mc$) 的乘积之比 | 旋磁比 $g$ 是一个系统的磁矩(磁动量) (magnetic momentum) 和其角动量 (angular momentum) 与拉莫因子 ($e/2mc$) 的乘积之比 | ||
Line 40: | Line 42: | ||
*/ | */ | ||
+ | |||
+ | ===1.2 | ||
+ | |||
+ | All electromagnetic phenomena are explained in terms of electric charges and their currents. | ||
+ | |||
+ | 所有的电磁现象都可以被纳入电荷极其产生的电流的框架内。 | ||
+ | |||
+ | 对于一个拥有磁二级矩和电二级矩的粒子而言,其电磁相互作用的哈密顿量为 | ||
+ | |||
+ | $$ | ||
+ | H = -\overrightarrow{\mu}\cdot | ||
+ | $$ | ||
+ | |||
+ | 其中 | ||
+ | $$ | ||
+ | \overrightarrow{\mu}=g\frac{e}{2mc}\frac{1}{2}(\frac{h}{2\pi})\overrightarrow{\sigma} = (g/ | ||
+ | $$ | ||
+ | $$ | ||
+ | \overrightarrow{d}=\eta\frac{e}{2mc}\frac{1}{2}(\frac{h}{2\pi})\overrightarrow{\sigma} = (\eta/ | ||
+ | $$ | ||
+ | |||
+ | 一个更为概括性的规律是,对于一个宇称确定的系统,奇数阶的电矩(二级、六级)和偶数阶的磁矩(四级、八级)都必须为0. | ||
+ | |||
+ | ====2. 理论==== | ||
+ | ===2.1 QED === | ||
+ | $$ | ||
+ | a^{QED} = A(\alpha/ | ||
+ | $$ | ||
+ | |||
+ | 目前最精确的精细结构常数值来自于电子($g-2$)的测量 | ||
+ | $$ | ||
+ | a^{-1} = 137.035\ 999\ 58 (52) (0.004\ \rm ppm) | ||
+ | $$ | ||
+ | |||
+ | 将其数值带入muon $a^{QED}$表达式即可得到$a^{QED}$. | ||
+ | |||
+ | ===2.2 EW === | ||
+ | |||
+ | ===2.3 First order hadronic=== | ||
+ | |||
+ | $$ | ||
+ | a^{HAD1} | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | R(s) = \frac{\sigma(e^+e^- \to\mathrm{hadrons})}{\sigma(e^+e^- \to\mu^+\mu^-)} | ||
+ | $$ | ||
+ | |||
+ | ===2.4 Higher order hadronic=== | ||
+ | |||
+ | ===2.5 NP=== | ||
+ | |||
+ | ====3 Spin motion ==== | ||
+ | ===3.1 Precession at rest=== | ||
+ | |||
+ | 在磁场中静止的muon,其自选将按照角频率$\omega_s$旋转 | ||
+ | |||
+ | $$ | ||
+ | \omega_s = (g/ | ||
+ | $$ | ||
+ | |||
+ | 相应的,衰变的电子的角分布也将按照同样的频率旋转。如果我们在一个指定方向测量衰变的电子数,计数率$N(t)$也将受到$\omega_s$的调制 | ||
+ | |||
+ | $$ | ||
+ | N(t) = N_0 \mathrm{exp}(-t/ | ||
+ | $$ | ||
+ | |||
+ | 该进动频率已经在磁场中被测量多次。磁场本身则可以由测量质子的自旋频率$\omega_p$来确定。比值$\lambda=\omega_s/ | ||
+ | 当然,$\lambda=\omega_s/ | ||
+ | |||
+ | ===3.2 Precession in flight=== | ||
+ | |||
+ | 在低速下,电子(muon)在磁场中的轨道旋转频率$\omega_c=eB/ | ||
+ | |||
+ | $$ | ||
+ | \omega_a \equiv | ||
+ | $$ | ||
+ | |||
+ | __Q: 为什么直接测量a比直接测量g(并和2比较)更精确?__ | ||
+ | |||
+ | |||
+ | ==3.2.1 | ||
+ | |||
+ | ==3.2.2 | ||
+ | |||
+ | ===3.3 Pitch correction=== | ||
+ | |||
[[精细结构常数]] | [[精细结构常数]] |